Skip to main content
Log in

A new AMBER-compatible force field parameter set for alkanes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a new force field parameter set for simulating alkanes. Its functional form and parameters are chosen to make it directly compatible with the AMBER94/99/12 family of force fields implemented in the available software. The proposed parameterization enables universal description of both the conformational and thermodynamic properties of linear, branched, and cyclic alkanes. Such unification is achieved by using two essential principles: (1) reduction of the Lennard-Jones radius for all sp3 carbons to 1.75Å; (2) separate optimization of Lennard-Jones well depths for carbons with different degree of substitution. The new parameter set may prove to be optimal for description of alkyl residues in a broad range of biomolecules, from amino acids to lipids with their extended linear tails.

We have a new force field parameter set applicable to various alkanes, including short and long chains, branches, as well as flexible or rigidly strained rings. The new set proves consistent, in agreement with ab-initio computations and experiment, description of conformational behavior, and thermodynamic physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM Jr, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  2. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  3. Jorgensen WL, Tirado-Rives J (1988) The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  4. MacKerell AD, JrD B, Bellott M, Dunbrack RL, JrJD E, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  5. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  6. Klauda JB, Venable RM, Alfredo Freites J, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, JrRW P (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  CAS  Google Scholar 

  7. Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116:3164–3179

    Article  CAS  Google Scholar 

  8. Jämbeck JPM, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8:2938–2948

    Article  CAS  Google Scholar 

  9. Skjevik ÅA, Madej BD, Walker RC, Teigen K (2012) LIPID11: a modular framework for lipid simulations using amber. J Phys Chem B 116:11124–11136

    Article  CAS  Google Scholar 

  10. Iijima T (1972) Molecular structure of propane. Bull Chem Soc Jpn 45:1291–1294

    Article  CAS  Google Scholar 

  11. Lide DR (1960) Microwave spectrum, structure, and dipole moment of propane. J Chem Phys 33:1514–1518

    Article  CAS  Google Scholar 

  12. Ascalaph molecular mechanics package http://www.biomolecular-modeling.com/Products.html

  13. Schreiner PR, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Schlecht S, Dahl JEP, Carlson RMK, Fokin AA (2011) Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces. Nature 477:308–311

    Article  CAS  Google Scholar 

  14. Verma AL, Murphy WF, Bernstein HJ (1974) Rotational isomerism: Aman spectra of n-butane, 2-methyl butane and 2,3-dimethyl butane. J Chem Phys 60:1540–1544

    Article  CAS  Google Scholar 

  15. Burkert U, Allinger NL (1982) Molecular Mechanics (ACS Monograph 177). American Chemical Society, Washington, D.C

    Google Scholar 

  16. Balabin RM (2009) Enthalpy difference between conformations of normal alkanes: raman spectroscopy study of n-pentane and n-butane. J Phys Chem A 113:1012–1019

    Article  CAS  Google Scholar 

  17. Högberg C-J, Nikitin AM, Lyubartsev AP (2008) Modification of the CHARMM force field for DMPC lipid bilayer. J Comput Chem 29:2359–2369

    Article  CAS  Google Scholar 

  18. Dashevsky VG (1982) Conformational analysis of organic molecules (in Russian). Khimiya, Moscow

    Google Scholar 

  19. Thomas LL, Christakis TJ, Jorgensen WL (2006) Conformation of alkanes in the gas phase and pure liquids. J Phys Chem B 110:21198–21204

    Article  CAS  Google Scholar 

  20. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) Application of RESP charges to calculation conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc 115:9620–9631

    Article  CAS  Google Scholar 

  21. Chen B, Siepmann JI (1999) Transferable potentials for phase equilibria. 3. Explicit-hydrogen description of n-alkanes. J Phys Chem B 103:5370–5379

    Article  CAS  Google Scholar 

  22. Wick CD, Stubbs JM, Rai N, Siepmann JI (2005) Transferable potentials for phase equilibria. 7. United-atom description for nitrogen, amines, amides, nitriles, pyridine and pyrimidine. J Phys Chem B 109:18974–18982

    Article  CAS  Google Scholar 

  23. Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001

    Article  CAS  Google Scholar 

  24. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  25. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  26. Allen MP, Tildesley DJ (1989) Computer Simulation of Liquids. Oxford University Press, Oxford

    Google Scholar 

  27. Lyubartsev AP, Laaksonen A (2000) MDynaMix - a scalable portable parallel MD simulation package for arbitrary molecular mixtures. Comput Phys Comm 128:565–589

    Article  CAS  Google Scholar 

  28. Lyubartsev AP, Martsinovskii AA, Shevkunov SV, Vorontsov-Velyaminov PN (1992) New approach to monte Carlo calculation of the free energy: method of expanded ensembles. J Chem Phys 96:1776–1783

    Article  CAS  Google Scholar 

  29. Jämbeck JPM, Mocci F, Lyubartsev AP, Laaksonen A (2013) Partial atomic charges and their impact on the free energy of solvation. J Comput Chem 34:187–197

    Article  CAS  Google Scholar 

  30. Wang F, Landau DP (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86:2050–2053

    Article  CAS  Google Scholar 

  31. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Comm 181:1477–1489

    Article  CAS  Google Scholar 

  32. Firefly QC package [a], which is partially based on the GAMESS (US) [b] source code. a. Granovsky AA, Firefly version 7.1.G, www.http://classic.chem.msu.su/gran/firefly/index.html

  33. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  34. Grubisic S, Brancato G, Pedone A, Barone V (2012) Extension of the AMBER force field to cyclic α, α dialkylated peptides. Phys Chem Chem Phys 14:15308–15320

    Article  CAS  Google Scholar 

  35. Grubisic S, Brancato G, Barone V (2013) An improved AMBER force field for α,α-dialkylated peptides: intrinsic and solvent-induced conformational preferences of model systems. Phys Chem Chem Phys 15:17395–17407

    Article  CAS  Google Scholar 

  36. Mackay D, Shiu WY, Ma K-Ch, Lee SCh (2006) Handbook of physical-chemical properties and environmental fate for organic chemicals. Taylor & Francis, Boca Raton

  37. Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized intermolecular potential functions for liquid hydrocarbons. 106:6638-6646

  38. NIST Chemistry WebBook http://webbook.nist.gov/chemistry/form-ser.html

Download references

Acknowledgments

This work has been carried out with the financial support of the Program of the Presidium of the Russian Academy of Sciences for Molecular and Cellular Biology and the Russian Foundation for Basic Research (Grant No. 11-04-02001), and Swedish Research Council (Vetenskapsrådet, Grant 621-2010-5005). The authors are grateful to Alexander V. Galkin for helpful comments and rendering the paper into English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei M. Nikitin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, A.M., Milchevskiy, Y.V. & Lyubartsev, A.P. A new AMBER-compatible force field parameter set for alkanes. J Mol Model 20, 2143 (2014). https://doi.org/10.1007/s00894-014-2143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2143-6

Keywords

Navigation