Abstract
The local electron affinity (EAL) and the local ionization energy (IEL) are successfully used for predicting properties of closed-shell species for drug design and for nanoelectronics. Here the respective unrestricted Hartree–Fock variants of EAL and IEL, i.e., the unrestricted local electron affinity (UHF–EAL) and ionization energy (UHF–IEL), have been shown to be useful for predicting properties of open-shell species. UHF–EAL and UHF–IEL have been applied for explaining unique electronic properties of an exemplary nanomaterial carbon peapod. It is also demonstrated that UHF–EAL is useful for predicting and better understanding reactivity of radicals related to alkanes activation.
This is a preview of subscription content, access via your institution.







References
- 1.
Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Average local ionization energies on the molecular-surfaces of aromatic systems as guides to chemical-reactivity. Can J Chem 68(8):1440–1443
- 2.
Ehresmann B, Martin B, Horn AHC, Clark T (2003) Local molecular properties and their use in predicting reactivity. J Mol Model 9(5):342–347
- 3.
Clark T (2010) The local electron affinity for non-minimal basis sets. J Mol Model 16(7):1231–1238
- 4.
Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16(11):1731–1742
- 5.
Manallack DT (2008) The use of local surface properties for molecular superimposition. J Mol Model 14(9):797–805
- 6.
Clark T (2004) QSAR and QSPR based solely on surface properties? J Mol Graph Model 22(6):519–525
- 7.
Ehresmann B, de Groot MJ, Clark T (2005) Surface-integral QSPR models: local energy properties. J Chem Inf Model 45(4):1053–1060
- 8.
Hennemann M, Friedl A, Lobell M, Keldenich J, Hillisch A, Clark T, Goller AH (2009) CypScore: quantitative prediction of reactivity toward cytochrornes P450 based on semiempirical molecular orbital theory. ChemMedChem 4(4):657–669
- 9.
Jakobi A-J, Mauser H, Clark T (2008) ParaFrag—an approach for surface-based similarity comparison of molecular fragments. J Mol Model 14(7):547–558
- 10.
Kramer C, Beck B, Kriegl JM, Clark T (2008) A composite model for hERG blockade. ChemMedChem 3(2):254–265
- 11.
El Kerdawy A, Wick CR, Hennemann M, Clark T (2012) Predicting the sites and energies of noncovalent intermolecular interactions using local properties. J Chem Inf Model 52(4):1061–1071
- 12.
Atienza C, Martin N, Wielopolski M, Haworth N, Clark T, Guldi DM (2006) Tuning electron transfer through p-phenyleneethynylene molecular wires. Chem Commun 30:3202–3204
- 13.
Ciammaichella A, Dral PO, Clark T, Tagliatesta P, Sekita M, Guldi DM (2012) A π-stacked porphyrin–fullerene electron donor–acceptor conjugate that features a surprising frozen geometry. Chem Eur J 18(44):14008–14016
- 14.
Lembo A, Tagliatesta P, Guldi DM, Wielopolski M, Nuccetelli M (2009) Porphyrin-beta-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems. J Phys Chem A 113(9):1779–1793
- 15.
Jäger CM, Schmaltz T, Novak M, Khassanov A, Vorobiev A, Hennemann M, Krause A, Dietrich H, Zahn D, Hirsch A, Halik M, Clark T (2013) Improving the charge transport in self-assembled monolayer field-effect transistors: from theory to devices. J Am Chem Soc 135(12):4893–4900
- 16.
Santamaria L, Bianchisantamaria A (1991) Free-radicals as carcinogens and their quenchers as anticarcinogens. Med Oncol Tumor Pharmacother 8(3):121–140
- 17.
Fokin AA, Schreiner PR (2002) Selective alkane transformations via radical and radical cations: insights into the activation step from experiment and theory. Chem Rev 102:1551–1593, See also references therein
- 18.
Dral PO (2013) Theoretical study of electronic properties of carbon allotropes. http://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/3763. Accessed 4 November 2013. URN: urn:nbn:de:bvb:29-opus4-37630. Dissertation (Dr. rer. nat.), Friedrich-Alexander-Universität Erlangen-Nürnberg
- 19.
Politzer P, Murray JS, Grice ME, Brinck T, Ranganathan S (1991) Radial behavior of the average local ionization energies of atoms. J Chem Phys 95(9):6699–6704
- 20.
Politzer P, Shields ZPI, Bulat FA, Murray JS (2011) Average local ionization energies as a route to intrinsic atomic electronegativities. J Chem Theory Comput 7(2):377–384
- 21.
Hennemann M, El Kerdawy A, Clark T, Dral PO (2013) VWF2Cube 2013. Universität Erlangen-Nürnberg and Cepos InSilico Ltd
- 22.
Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) The development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107(13):3902–3909
- 23.
Hennemann M, Clark T, Dral PO (2013) EMPIRE 2013. Universität Erlangen-Nürnberg and Cepos InSilico Ltd
- 24.
Zhurko GA, Zhurko DA (2013) Chemcraft. Chemcraft Version 1.7 (Build 132)
- 25.
Clark T, Hennemann M (2012) EMPIRE 2012. Universität Erlangen-Nürnberg and Cepos InSilico Ltd. (http://www.ceposinsilico.de/products/empire.htm), accessed April 29th, 2013
- 26.
Clark T, Alex A, Beck B, Burkhardt F, Chandrasekhar J, Gedeck P, Horn A, Hutter M, Martin B, Dral PO, Rauhut G, Sauer W, Schindler T, Steinke T (2011) VAMP 11.0. University of Erlangen, Germany
- 27.
Smith BW, Monthioux M, Luzzi DE (1998) Encapsulated C60 in carbon nanotubes. Nature 396(6709):323–324
- 28.
Vavro J, Llaguno MC, Satishkumar BC, Luzzi DE, Fischer JE (2002) Electrical and thermal properties of C60-filled single-wall carbon nanotubes. Appl Phys Lett 80(8):1450–1452
- 29.
Guo A, Fu YY, Guan LH, Shi ZJ, Gu ZN, Huang R, Zhang X (2007) Ambipolar transport behaviors in fullerene peapod transistors. Solid State Phenom 121–123:521–524
- 30.
Rochefort A (2003) Electronic and transport properties of carbon nanotube peapods. Phys Rev B 67(11):115401
- 31.
Brink C, Andersen LH, Hvelplund P, Mathur D, Voldstad JD (1995) Laser photodetachment of C60 − and C70 − ions cooled in a storage ring. Chem Phys Lett 233(1–2):52–56
- 32.
Wang X-B, Ding C-F, Wang L-S (1998) High resolution photoelectron spectroscopy of C60 −. J Chem Phys 110(17):8217–8220
- 33.
Wildman TA (1986) An ab initio quantum chemical study of hydrogen abstraction from methane by methyl. Chem Phys Lett 126(3–4):325–329
- 34.
Fisher JJ, Koyanagi GK, McMahon TB (2000) The C2H7 + potential energy surface: a Fourier transform ion cyclotron resonance investigation of the reaction of methyl cation with methane. Int J Mass Spectrom 195:491–505
Acknowledgments
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of SFB 953 “Synthetic Carbon Allotropes” and by the Universität Bayern e.V. via a stipend within the Bavarian Elite Aid Program.
Author information
Affiliations
Corresponding author
Additional information
This paper belongs to a Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 770 kb)
Rights and permissions
About this article
Cite this article
Dral, P.O. The unrestricted local properties: application in nanoelectronics and for predicting radicals reactivity. J Mol Model 20, 2134 (2014). https://doi.org/10.1007/s00894-014-2134-7
Received:
Accepted:
Published:
Keywords
- Carbon nanotubes
- Fullerene
- Local electron affinity
- Local ionization energy
- Local properties
- Nanoelectronics