The unrestricted local properties: application in nanoelectronics and for predicting radicals reactivity

Abstract

The local electron affinity (EAL) and the local ionization energy (IEL) are successfully used for predicting properties of closed-shell species for drug design and for nanoelectronics. Here the respective unrestricted Hartree–Fock variants of EAL and IEL, i.e., the unrestricted local electron affinity (UHF–EAL) and ionization energy (UHF–IEL), have been shown to be useful for predicting properties of open-shell species. UHF–EAL and UHF–IEL have been applied for explaining unique electronic properties of an exemplary nanomaterial carbon peapod. It is also demonstrated that UHF–EAL is useful for predicting and better understanding reactivity of radicals related to alkanes activation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Average local ionization energies on the molecular-surfaces of aromatic systems as guides to chemical-reactivity. Can J Chem 68(8):1440–1443

    Article  CAS  Google Scholar 

  2. 2.

    Ehresmann B, Martin B, Horn AHC, Clark T (2003) Local molecular properties and their use in predicting reactivity. J Mol Model 9(5):342–347

    Article  CAS  Google Scholar 

  3. 3.

    Clark T (2010) The local electron affinity for non-minimal basis sets. J Mol Model 16(7):1231–1238

    Article  CAS  Google Scholar 

  4. 4.

    Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16(11):1731–1742

    Article  CAS  Google Scholar 

  5. 5.

    Manallack DT (2008) The use of local surface properties for molecular superimposition. J Mol Model 14(9):797–805

    Article  CAS  Google Scholar 

  6. 6.

    Clark T (2004) QSAR and QSPR based solely on surface properties? J Mol Graph Model 22(6):519–525

    Article  CAS  Google Scholar 

  7. 7.

    Ehresmann B, de Groot MJ, Clark T (2005) Surface-integral QSPR models: local energy properties. J Chem Inf Model 45(4):1053–1060

    Article  CAS  Google Scholar 

  8. 8.

    Hennemann M, Friedl A, Lobell M, Keldenich J, Hillisch A, Clark T, Goller AH (2009) CypScore: quantitative prediction of reactivity toward cytochrornes P450 based on semiempirical molecular orbital theory. ChemMedChem 4(4):657–669

    Article  CAS  Google Scholar 

  9. 9.

    Jakobi A-J, Mauser H, Clark T (2008) ParaFrag—an approach for surface-based similarity comparison of molecular fragments. J Mol Model 14(7):547–558

    Article  CAS  Google Scholar 

  10. 10.

    Kramer C, Beck B, Kriegl JM, Clark T (2008) A composite model for hERG blockade. ChemMedChem 3(2):254–265

    Article  CAS  Google Scholar 

  11. 11.

    El Kerdawy A, Wick CR, Hennemann M, Clark T (2012) Predicting the sites and energies of noncovalent intermolecular interactions using local properties. J Chem Inf Model 52(4):1061–1071

    Article  CAS  Google Scholar 

  12. 12.

    Atienza C, Martin N, Wielopolski M, Haworth N, Clark T, Guldi DM (2006) Tuning electron transfer through p-phenyleneethynylene molecular wires. Chem Commun 30:3202–3204

    Article  CAS  Google Scholar 

  13. 13.

    Ciammaichella A, Dral PO, Clark T, Tagliatesta P, Sekita M, Guldi DM (2012) A π-stacked porphyrin–fullerene electron donor–acceptor conjugate that features a surprising frozen geometry. Chem Eur J 18(44):14008–14016

    Article  CAS  Google Scholar 

  14. 14.

    Lembo A, Tagliatesta P, Guldi DM, Wielopolski M, Nuccetelli M (2009) Porphyrin-beta-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems. J Phys Chem A 113(9):1779–1793

    Article  CAS  Google Scholar 

  15. 15.

    Jäger CM, Schmaltz T, Novak M, Khassanov A, Vorobiev A, Hennemann M, Krause A, Dietrich H, Zahn D, Hirsch A, Halik M, Clark T (2013) Improving the charge transport in self-assembled monolayer field-effect transistors: from theory to devices. J Am Chem Soc 135(12):4893–4900

    Article  CAS  Google Scholar 

  16. 16.

    Santamaria L, Bianchisantamaria A (1991) Free-radicals as carcinogens and their quenchers as anticarcinogens. Med Oncol Tumor Pharmacother 8(3):121–140

    CAS  Google Scholar 

  17. 17.

    Fokin AA, Schreiner PR (2002) Selective alkane transformations via radical and radical cations: insights into the activation step from experiment and theory. Chem Rev 102:1551–1593, See also references therein

    Article  CAS  Google Scholar 

  18. 18.

    Dral PO (2013) Theoretical study of electronic properties of carbon allotropes. http://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/3763. Accessed 4 November 2013. URN: urn:nbn:de:bvb:29-opus4-37630. Dissertation (Dr. rer. nat.), Friedrich-Alexander-Universität Erlangen-Nürnberg

  19. 19.

    Politzer P, Murray JS, Grice ME, Brinck T, Ranganathan S (1991) Radial behavior of the average local ionization energies of atoms. J Chem Phys 95(9):6699–6704

    Article  CAS  Google Scholar 

  20. 20.

    Politzer P, Shields ZPI, Bulat FA, Murray JS (2011) Average local ionization energies as a route to intrinsic atomic electronegativities. J Chem Theory Comput 7(2):377–384

    Article  CAS  Google Scholar 

  21. 21.

    Hennemann M, El Kerdawy A, Clark T, Dral PO (2013) VWF2Cube 2013. Universität Erlangen-Nürnberg and Cepos InSilico Ltd

  22. 22.

    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) The development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107(13):3902–3909

    Article  CAS  Google Scholar 

  23. 23.

    Hennemann M, Clark T, Dral PO (2013) EMPIRE 2013. Universität Erlangen-Nürnberg and Cepos InSilico Ltd

  24. 24.

    Zhurko GA, Zhurko DA (2013) Chemcraft. Chemcraft Version 1.7 (Build 132)

  25. 25.

    Clark T, Hennemann M (2012) EMPIRE 2012. Universität Erlangen-Nürnberg and Cepos InSilico Ltd. (http://www.ceposinsilico.de/products/empire.htm), accessed April 29th, 2013

  26. 26.

    Clark T, Alex A, Beck B, Burkhardt F, Chandrasekhar J, Gedeck P, Horn A, Hutter M, Martin B, Dral PO, Rauhut G, Sauer W, Schindler T, Steinke T (2011) VAMP 11.0. University of Erlangen, Germany

    Google Scholar 

  27. 27.

    Smith BW, Monthioux M, Luzzi DE (1998) Encapsulated C60 in carbon nanotubes. Nature 396(6709):323–324

    Article  CAS  Google Scholar 

  28. 28.

    Vavro J, Llaguno MC, Satishkumar BC, Luzzi DE, Fischer JE (2002) Electrical and thermal properties of C60-filled single-wall carbon nanotubes. Appl Phys Lett 80(8):1450–1452

    Article  CAS  Google Scholar 

  29. 29.

    Guo A, Fu YY, Guan LH, Shi ZJ, Gu ZN, Huang R, Zhang X (2007) Ambipolar transport behaviors in fullerene peapod transistors. Solid State Phenom 121–123:521–524

    Article  Google Scholar 

  30. 30.

    Rochefort A (2003) Electronic and transport properties of carbon nanotube peapods. Phys Rev B 67(11):115401

    Article  CAS  Google Scholar 

  31. 31.

    Brink C, Andersen LH, Hvelplund P, Mathur D, Voldstad JD (1995) Laser photodetachment of C60 and C70 ions cooled in a storage ring. Chem Phys Lett 233(1–2):52–56

    Article  CAS  Google Scholar 

  32. 32.

    Wang X-B, Ding C-F, Wang L-S (1998) High resolution photoelectron spectroscopy of C60 . J Chem Phys 110(17):8217–8220

    Article  Google Scholar 

  33. 33.

    Wildman TA (1986) An ab initio quantum chemical study of hydrogen abstraction from methane by methyl. Chem Phys Lett 126(3–4):325–329

    Article  CAS  Google Scholar 

  34. 34.

    Fisher JJ, Koyanagi GK, McMahon TB (2000) The C2H7 + potential energy surface: a Fourier transform ion cyclotron resonance investigation of the reaction of methyl cation with methane. Int J Mass Spectrom 195:491–505

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of SFB 953 “Synthetic Carbon Allotropes” and by the Universität Bayern e.V. via a stipend within the Bavarian Elite Aid Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavlo O. Dral.

Additional information

This paper belongs to a Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 770 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dral, P.O. The unrestricted local properties: application in nanoelectronics and for predicting radicals reactivity. J Mol Model 20, 2134 (2014). https://doi.org/10.1007/s00894-014-2134-7

Download citation

Keywords

  • Carbon nanotubes
  • Fullerene
  • Local electron affinity
  • Local ionization energy
  • Local properties
  • Nanoelectronics