Skip to main content
Log in

Theoretical study of X- · 1 · YF (1 = triazine, X = Cl, Br and I, Y = H, Cl, Br, I, PH2 and AsH2): noncovalently electron-withdrawing effects on anion-arene interactions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The ternary complexes X- · 1 · YF (1 = triazine, X = Cl, Br and I, Y = H, Cl, Br, I, PH2 and AsH2) have been investigated by MP2 calculations to understand the noncovalently electron-withdrawing effects on anion-arene interactions. The results indicate that in binary complexes (1 · X-), both weak σ-type and anion-π complexes can be formed for Cl- and Br-, but only anion-π complex can be formed for I-. Moreover, the hydrogen-bonding complex is the global minimum for all three halides in binary complexes. However, in ternary complexes, anion-π complex become unstable and only σ complex can retain in many cases for Cl- and Br-. Anion-π complex keeps stable only when YF = HF. In contrast with binary complexes, σ complex become the global minimum for Cl- and Br- in ternary complexes. These changes in binding mode and strength are consistent with the results of covalently electron-withdrawing effects. However, in contrast with the covalently electron-withdrawing substituents, Cl- and Br- can attack the aromatic carbon atom to form a strong σ complex when the noncovalently electron-withdrawing effect is induced by halogen bonding. The binding behavior for I- is different from that for Cl- and Br- in two aspects. First, the anion-π complex for I- can also keep stable when the noncovalent interaction is halogen bonding. Second, the anion-π complex for I- is the global minimum when it can retain as a stable structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Anion-π interactions: do they exist? Angew Chem, Int Ed 41:3389–3392

    Article  Google Scholar 

  2. Schottel BL, Chifotides HT, Dunbar KR (2008) Anion-π interactions. Chem Soc Rev 37:68–83

    Article  CAS  Google Scholar 

  3. Mascal M, Armstrong A, Bartberger MD (2002) Anion-aromatic bonding: a case for anion recognition by π-acidic rings. J Am Chem Soc 124:6274–6276

    Article  CAS  Google Scholar 

  4. Alkorta I, Rozas I, Elguero J (2002) Interaction of anions with perfluoro aromatic compounds. J Am Chem Soc 124:8593–8598

    Article  CAS  Google Scholar 

  5. Dawson RE, Hennig A, Weimann DP, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley CA, Matile S (2010) Experimental evidence for the functional relevance of anion-π interactions. Nat Chem 2:533–538

    Article  CAS  Google Scholar 

  6. Ballester P (2013) Experimental quantification of anion-π interactions in solution using neutral host-guest model systems. Acc Chem Res 46:874–884

    Article  CAS  Google Scholar 

  7. Berryman OB, Bryantsev VS, Stay DP, Johnson DW, Hay BP (2007) Structural criteria for the design of anion receptors: the interaction of halides with electron-deficient arenes. J Am Chem Soc 129:48–58

    Article  CAS  Google Scholar 

  8. Hay BP, Bryantsev VS (2008) Anion-Arene adducts: C-H hydrogen bonding, anion-π interaction, and carbon bonding motifs. Chem Commun 2417–2428

  9. Hay BP, Custelcean R (2009) Anion-π interactions in crystal structures: commonplace or extraordinary? Cryst Growth Des 9:2539–2545

    Article  CAS  Google Scholar 

  10. Frontera A (2013) Encapsulation of anions: macrocyclic receptors based on metal coordination and anion–π interactions. Coord Chem Rev 257:1716–1727

    Article  CAS  Google Scholar 

  11. Frontera A, Quiñonero D, Deyà PM (2011) Cation–π and anion–π interactions. WIREs Comput Mol Sci 1:440–459

    Article  CAS  Google Scholar 

  12. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Putting anion-π interactions into perspective. Angew Chem, Int Ed 50:9564–9583

    Article  CAS  Google Scholar 

  13. Estarellas C, Bauza A, Frontera A, Quiñonero D, Deyà PM (2011) On the directionality of anion-π interactions. Phys Chem Chem Phys 13:5696–5702

    Article  CAS  Google Scholar 

  14. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2004) Cation-π versus anion-π interactions: energetic, charge transfer, and aromatic aspects. J Phys Chem A 108:9423–9427

    Article  CAS  Google Scholar 

  15. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2005) Approximate additivity of anion-π interactions: an Ab initio study on anion-π, anion-π2 and anion-π3 complexes. J Phys Chem A 109:9341–9345

    Article  CAS  Google Scholar 

  16. Chen Y-S (2013) Theoretical study of interactions between halogen-substituted s-triazine and halide anions. J Phys Chem A 117:8081–8090

    Article  CAS  Google Scholar 

  17. Schneider H, Vogelhuber KM, Schinle F, Weber JM (2007) Aromatic molecules in anion recognition: electrostatics versus hydrogen -bonding. J Am Chem Soc 129:13022–13026

    Article  CAS  Google Scholar 

  18. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deya PM (2003) A topological analysis of the electron density in anion-π interactions. Chem Phys Chem 4:1344–1348

    Article  CAS  Google Scholar 

  19. Zheng X-Y, Shuai Z-G, Wang D (2013) Anion-binding properties of π-electron deficient cavities in Bis(tetraoxacalix[2]arene[2]triazine): a theoretical study. J Phys Chem A 117:3844–3851

    Article  CAS  Google Scholar 

  20. Kim D, Lee EC, Kim KS, Tarakeshwar P (2007) Cation-π-anion interaction: a theoretical investigation of the role of induction energies. J Phys Chem A 111:7980–7986

    Article  CAS  Google Scholar 

  21. Kim DY, Singh NJ, Kim KS (2008) Cyameluric acid as anion-π type receptor for ClO4 - and NO3 -: π-stacked and edge-to-face structures. J Chem Theory Comput 4:1401–1407

    Article  CAS  Google Scholar 

  22. Kim DY, Singh NJ, Lee JW, Kim KS (2008) Solvent-driven structural changes in anion-π complexes. J Chem Theory Comput 4:1162–1169

    Article  CAS  Google Scholar 

  23. Demeshko S, Dechert S, Meyer F (2004) Anion-π interactions in a carousel copper(II)-triazine complex. J Am Chem Soc 126:4508–4509

    Article  CAS  Google Scholar 

  24. Rosokha YS, Lindeman SV, Rosokha SV, Kochi JK (2004) Halide recognition through diagnostic“anion-π” interactions: molecular complexes of Cl-, Br-, and I- with olefinic and aromatic π receptors. Angew Chem, Int Ed 43:4650–4652

    Article  CAS  Google Scholar 

  25. de Hoog P, Gamez P, Mutikainen I, Turpeinen U, Reedijk J (2004) An aromatic anion receptor: anion-π interactions do exist. Angew Chem, Int Ed 43:5815–5817

    Article  Google Scholar 

  26. Schottel BL, Bacsa J, Dunbar KR (2005) Anion dependence of Ag(I) reactions with 3,6-Bis(2-Pyridyl)-1,2,4,5-Tetrazine (bptz): isolation of the molecular propeller compound [Ag2(bptz)3][AsF6]2. Chem Commun 46–47

  27. Mascal M, Yakovlev I, Nikitin EB, Fettinger JC (2007) Fluoride-selective host based on anion-π interactions, ion pairing, and hydrogen bonding: synthesis and fluoride-ion sandwich complex. Angew Chem, Int Ed 46:8782–8784

    Article  CAS  Google Scholar 

  28. Wang D-X, Zheng Q-Y, Wang Q-Q, Wang M-X (2008) Halide recognition by tetraoxacalix[2]arene[2]triazine receptors: concurrent noncovalent halide-π and lone-pair-π interactions in host−halide−water ternary complexes. Angew Chem, Int Ed 47:7485–7488

    Article  CAS  Google Scholar 

  29. Kebarle P, Chowdhury S (1987) Electron affinities and electron-transfer reactions. Chem Rev 87:513–534

    Article  CAS  Google Scholar 

  30. Alberto ME, Mazzone G, Russo N, Sicilia E (2010) The mutual influence of Non-covalent interactions in π-electron deficient cavities: the case of anion recognition by tetraoxacalix[2]-arene[2]triazine. Chem Commun 46:5894–5896

    Article  CAS  Google Scholar 

  31. Zuo C-S, Quan J-M, Wu Y-D (2007) Oxa-bicyclocalixarenes: a New cage for anions Via C−H · · · anion hydrogen bonds and anion · · · π interactions. Org Lett 9:4219–4222

    Article  CAS  Google Scholar 

  32. Wang D-X, Wang Q-Q, Han Y, Wang Y, Huang Z-T, Wang M-X (2010) Versatile anion-π interactions between halides and a conformationally rigid Bis(tetraoxacalix[2]arene[2]triazine) cage and their directing effect on molecular assembly. Chem–Eur J 16:13053–13057

    CAS  Google Scholar 

  33. Lucas X, Estarellas C, Escudero D, Frontera A, Quinonero D, Deya PM (2009) Very long-range effects: cooperativity between anion-π and hydrogen-bonding interactions. Chem Phys Chem 10:2256–2264

    Article  CAS  Google Scholar 

  34. Escudero D, Frontera A, Quinonero D, Deya PM (2009) Interplay between anion-π and hydrogen bonding interactions. J Comput Chem 30:75–82

    Article  CAS  Google Scholar 

  35. Quinonero D, Frontera A, Garau C, Ballester P, Costa A, Deya PM (2006) Interplay between cation–π, anion–π and π–π interactions. Chem Phys Chem 7:2487–2491

    Article  CAS  Google Scholar 

  36. Frontera A, Quinonero D, Costa A, Ballester P, Deya PM (2007) MP2 Study of cooperative effects between cation–π, anion–π and π–π interactions. New J Chem 31:556–560

    Article  CAS  Google Scholar 

  37. Estarellas C, Frontera A, Quinonero D, Deya PM (2011) Theoretical study on cooperativity effects between anion–π and halogen-bonding interactions. Chem Phys Chem 12:2742–2750

    Article  CAS  Google Scholar 

  38. Das A, Choudhury SR, Estarellas C, Dey B, Frontera A, Hemming J, Helliwell M, Gamez P, Mukhopadhyay S (2011) Supramolecular assemblies involving anion–π and lone pair–π interactions: experimental observation and theoretical analysis. Cryst Eng Comm 13:4519–4527

    Article  CAS  Google Scholar 

  39. Seth SK, Sarkar D, Kar T (2011) Use of π–π forces to steer the assembly of chromone derivatives into hydrogen bonded supramolecular layers: crystal structures and hirshfeld surface analyses. Cryst Eng Comm 13:4528–4535

    Article  CAS  Google Scholar 

  40. Seth SK, Saha I, Estarellas C, Frontera A, Kar T, Mukhopadhyay S (2011) Supramolecular self-assembly of M-IDA complexes involving lone-pair · · · π interactions: crystal structures, hirshfeld surface analysis, and DFT calculations [H2IDA = iminodiacetic acid, M = Cu(II), Ni(II)]. Cryst Growth Des 11:3250–3265

    Article  CAS  Google Scholar 

  41. Choudhury SR, Gamez P, Robertazzi A, Chen CY, Lee HM, Mukhopadhyay S (2008) Experimental observation of supramolecular Carbonyl-π/π-π/π-carbonyl and Carbonyl-π/π-π/π-anion assemblies supported by theoretical studies. Cryst Growth Des 8:3773–3784

    Article  CAS  Google Scholar 

  42. Seth SK, Sarkar D, Jana AD, Kar T, Mukhopadhyay S (2011) On the possibility of tuning molecular edges to direct supramolecular self-assembly in coumarin derivatives through cooperative weak forces: crystallographic and hirshfeld surface analyses. Cryst Growth Des 11:4837–4849

    Article  CAS  Google Scholar 

  43. Choudhury SR, Dey B, Das S, Gamez P, Robertazzi A, Chan KT, Lee HM, Mukhopadhyay S (2009) Supramolecular lone pair−π/π−π/π−anion assembly in a Mg(II)−malonate−2-aminopyridine−nitrate ternary system. J Phys Chem A 113:1623–1627

    Article  CAS  Google Scholar 

  44. Das A, Choudhury SR, Dey B, Yalamanchili SK, Helliwell M, Gamez P, Mukhopadhyay S, Estarellas C, Frontera A (2010) Supramolecular assembly of Mg(II) complexes directed by associative lone Pair−π/π−π/π−Anion−π/π−Lone pair interactions. J Phys Chem B 114:4998–5009

    Article  CAS  Google Scholar 

  45. Li Q-Z, Lin Q-Q, Li W-Z, Cheng J-B, Gong B-A, Sun J-Z (2008) Cooperativity between the halogen bond and the hydrogen bond in H3N · · · XY · · · HF complexes (X, Y=F, Cl, Br). Chem Phys Chem 9:2265–2269

    Article  CAS  Google Scholar 

  46. Li Q-Z, Li R, Liu Z-B, Li W-Z, Cheng J-B (2011) Interplay between halogen bond and lithium bond in MCN-LiCN-XCCH (M = H, Li, and Na; X = Cl, Br, and I) complex: the enhancement of halogen bond by a lithium bond. J Comput Chem 32:3296–3303

    Article  CAS  Google Scholar 

  47. Li Q-Z, Li R, Liu X-F, Li W-Z, Cheng J-B (2012) Concerted interaction between pnicogen and halogen bonds in XCl-FH2P-NH3 (X=F, OH, CN, NC, and FCC). Chem Phys Chem 13:1205–1212

    Article  CAS  Google Scholar 

  48. Alkorta I, Blanco F, Elguero J, Estarellas C, Frontera A, Quinonero D, Deya PM (2009) Simultaneous interaction of tetrafluoroethene with anions and hydrogen-bond donors: a cooperativity study. J Chem Theory Comput 5:1186–1194

    Article  CAS  Google Scholar 

  49. Alkorta I, Sanchez-Sanz G, Elguero J, Del Bene JE (2012) Influence of hydrogen bonds on the P · · · P pnicogen bond. J Chem Theory Comp 8:2320–2327

    Article  CAS  Google Scholar 

  50. Janet E, Del Bene JE, Alkorta I, Goar S-S, Elguero J (2013) Phosphorus as a simultaneous electron-pair acceptor in intermolecular P · · · N pnicogen bonds and electron-pair donor to Lewis acids. J Phys Chem A 117:3133–3141

    Article  Google Scholar 

  51. Lu Y-X, Liu Y-T, Li H-Y, Zhu X, Liu H-L, Zhu W-L (2012) Energetic effects between halogen bonds and anion-π or lone pair-π interactions: a theoretical study. J Phys Chem A 116:2591–2597

    Article  CAS  Google Scholar 

  52. Frisch MJ, et al. (2003) Gaussian 03; Gaussian, Inc.: Wallingford, CT

  53. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  54. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital. Donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  55. Bader RWF (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

    Google Scholar 

  56. Biegler-König F (2000) AIM2000. University of Applied Sciences, Bielefeld

    Google Scholar 

Download references

Acknowledgments

Supported by the High Performance Computing Center, Kunming Institute of Botany, CAS, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Yao, L. Theoretical study of X- · 1 · YF (1 = triazine, X = Cl, Br and I, Y = H, Cl, Br, I, PH2 and AsH2): noncovalently electron-withdrawing effects on anion-arene interactions. J Mol Model 20, 2076 (2014). https://doi.org/10.1007/s00894-014-2076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2076-0

Keywords

Navigation