Skip to main content
Log in

DFT study of ozone dissociation on BC3 graphene with Stone–Wales defects

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ozone (O3) adsorption on pristine Stone–Wales (SW) defective BC3 graphene-like sheets was investigated using density functional calculations. It was found that O3 is weakly adsorbed on the pristine sheet. Two types of SW-defective sheets were studied, SW-CC and SW-BC, in which a defect is formed by rotating a C–C or B–N bond, respectively. O3 molecules were found to be more reactive on SW-BC defective sheets. It was predicted that O3 molecules are reduced to O2 molecules on SW-BC sheets, overcoming an energy barrier of 34.2 kcal/mol−1 at the B3LYP level of theory and 27.2 kcal/mol−1 at the BP98 level of theory. Therefore, SW-BC sheets could potentially be employed as a metal-free catalyst for O3 reduction. The HOMO–LUMO gap of a SW-BC sheet decreases from 2.16 to 1.21 eV after O3 dissociation on its surface in the most stable state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–b
Fig. 3
Fig. 4a–d
Fig. 5a–d
Fig. 6

Similar content being viewed by others

References

  1. Felix EP, Filho JP, Garcia G, Cardoso AA (2011) Microchim J 99:530

    Article  CAS  Google Scholar 

  2. Yu Q, Pan H, Zhao M, Liu Z, Wang J, Chen Y, Gong M (2009) J Hazard Mater 172:631

    Article  CAS  Google Scholar 

  3. Li D, Zhu J, Ray MB, Ray AK (2011) Chem Eng Sci 66:4615

    Article  CAS  Google Scholar 

  4. Chelmecka E, Pasterny K, Kupka T, Stobiński L (2012) J Mol Model 18:1463

    Article  CAS  Google Scholar 

  5. Rajarajeswari M, Iyakutti K, Kawazoe Y (2012) J Mol Model 18:771

    Article  CAS  Google Scholar 

  6. Chełmecka E, Pasterny K, Kupka T, Stobiński L (2012) J Mol Model 18:2241

    Article  Google Scholar 

  7. Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2012) Microelectron J 43:452

    Article  CAS  Google Scholar 

  8. Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2012) Phys E 44:1963

    Article  CAS  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  10. Ouyang T, Chen Y, Xie Y, Yang K, Zhong J (2010) Solid State Commun 150:2366

    Article  CAS  Google Scholar 

  11. Shayeganfar F, Neek-Amal M (2012) Solid State Commun 152:1493

    Article  CAS  Google Scholar 

  12. Ahmadi Peyghan A, Hadipour N, Bagheri Z (2013) J Phys Chem C 117:2427

    Article  CAS  Google Scholar 

  13. Sofo JO, Chaudhari AS, Barber GD (2007) Phys Rev B 75:153401

    Article  Google Scholar 

  14. Tanaka H, Kawamataa Y, Simizua H, Fujitaa T, Yanagisawaa H, Otanic S, Oshima C (2005) Solid State Commun 136:22

    Article  CAS  Google Scholar 

  15. Tomanek D, Wentzcovitch RM, Louie SG, Cohen ML (1988) Phys Rev B 37:3134

    Article  CAS  Google Scholar 

  16. Wang Q, Chen LQ, Annett JF (1996) Phys Rev B 54:R2271

    Article  CAS  Google Scholar 

  17. Pontes RB, Fazzio A, Dalpian GM (2009) Phys Rev B 79:033412

    Article  Google Scholar 

  18. Ding Y, Wang Y, Ni J (2009) Appl Phys Lett 94:073111

    Article  Google Scholar 

  19. Ding Y, Ni J (2009) J Phys Chem C 113:18468

    Article  CAS  Google Scholar 

  20. Peyghan AA, Bagheri Z (2012) Comput Theor Chem 1008:1

    Article  Google Scholar 

  21. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652

    Article  CAS  Google Scholar 

  22. Nomani MWK, Shishir R, Qazi M, Diwan D, Koley G, Shields VB, Spencer MG, Tompa GS, Sbrockey NM (2010) Sensor Actuat B Chem 150:301

    Article  CAS  Google Scholar 

  23. Basu S, Bhattacharyya P (2012) Sensor Actuat B Chem 173:1

    Article  CAS  Google Scholar 

  24. Beheshtian J, Soleymanabadi H, Peyghan AA, Bagheri Z (2012) Appl Surf Sci 268:436

    Article  Google Scholar 

  25. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  26. O’Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839

    Article  Google Scholar 

  27. Gan LH, Zhao JQ (2009) Phys E 41:1249

    Article  CAS  Google Scholar 

  28. Contreras M, Avila D, Alvarez J, Rozas R (2010) Struct Chem 21:573

    Article  CAS  Google Scholar 

  29. Yilmazer ND, Fellah MF, Onal I (2010) Appl Surf Sci 256:5088

    Article  CAS  Google Scholar 

  30. Beheshtian J, Peyghan AA, Bagheri Z, Bull KM (2012) Korean Chem Soc 33:1925

    Article  CAS  Google Scholar 

  31. Baei MT, Peyghan AA, Bagheri Z (2012) Bull Korean Chem Soc 33:3339

    Article  Google Scholar 

  32. Guo X, Liao J, Zhao J (2007) Nanotechnology 18:105705

    Article  Google Scholar 

  33. Li Y, Zhou Z, Golberg D, Bando Y, Schleyer PVR, Chen Z (2008) J Phys Chem C 112:1365

    Article  CAS  Google Scholar 

  34. Li S (2006) Semiconductor physical electronics, 2nd edn. Springer, Berlin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Moradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyghan, A.A., Moradi, M. DFT study of ozone dissociation on BC3 graphene with Stone–Wales defects. J Mol Model 20, 2071 (2014). https://doi.org/10.1007/s00894-014-2071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2071-5

Keywords

Navigation