Skip to main content
Log in

A density functional theory study on peptide bond cleavage at aspartic residues: direct vs cyclic intermediate hydrolysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4
Fig. 7

Similar content being viewed by others

References

  1. Pan B, Ricci MS, Trout BL (2006) Biochemistry 45:15430–15443

    Article  CAS  Google Scholar 

  2. Chu JW, Yin J, Brooks BR, Wang DIC, Ricci MS, Brems DN, Trout BLJ (2004) Pharm Sci 93:3096–3102

    Article  CAS  Google Scholar 

  3. Liu DTY (1992) Trends Biotechnol 10:364–369

    Article  CAS  Google Scholar 

  4. Kosky AA, Razzaq UO, Treuheit MJ, Brems DN (1999) Protein Sci 8:2519–2523

    Article  CAS  Google Scholar 

  5. Wei W (1999) Int J Pharm 185:129–188

    Article  Google Scholar 

  6. Krug JP, Popelier PLA, Bader RFW (1992) J Phys Chem 96:7604–7616

    Article  CAS  Google Scholar 

  7. Antonczak S, Ruizlopez MF, Rivail JL (1994) J Am Chem Soc 116:3912–3921

    Article  CAS  Google Scholar 

  8. Bakowies D, Kollman PA (1999) J Am Chem Soc 121:5712–5726

    Article  CAS  Google Scholar 

  9. Kahne D, Still WC (1988) J Am Chem Soc 110:7529–7534

    Article  CAS  Google Scholar 

  10. Brown RS, Bennet AJ, Slebockatilk H (1992) Acc Chem Res 25:481–488

    Article  CAS  Google Scholar 

  11. Bryant RAR, Hansen DE (1996) J Am Chem Soc 118:498–5499

    Article  Google Scholar 

  12. Radzicka A, Wolfenden R (1996) J Am Chem Soc 118:6105–6109

    Article  CAS  Google Scholar 

  13. Gorb L, Asensio A, Tunon I, Ruiz-Lopez MF (2005) Chem Eur J 11:6743–6753

    Article  CAS  Google Scholar 

  14. Cascella M, Raugei S, Carloni P (2004) J Phys Chem B 108:369–375

    Article  CAS  Google Scholar 

  15. Zahn D (2004) Eur J Org Chem 19:4020–4023

    Article  Google Scholar 

  16. Pan B, Ricci MS, Trout BL (2011) J Phys Chem B 115:5958–5970

    Article  CAS  Google Scholar 

  17. Pan B, Ricci MS, Trout BL (2010) J Phys Chem B 114:4389–4399

    Article  CAS  Google Scholar 

  18. Wang B, Cao Z (2010) J Phys Chem A 114:12918–12927

    Article  CAS  Google Scholar 

  19. Catak S, Monard G, Aviyente V, Ruiz-Lopez MR (2008) J Phys Chem A 112:8752–8761

    Article  CAS  Google Scholar 

  20. Catak S, Monard G, Aviyente V, Ruiz-Lopez MR (2006) J Phys Chem A 110:8354–8365

    Article  CAS  Google Scholar 

  21. Joshi AB, Kirch LE (2004) Int J Pharm 273:213–219

    Article  CAS  Google Scholar 

  22. Joshi AB, Rus E, Kirch LE (2000) Int J Pharm 203:115–125

    Article  CAS  Google Scholar 

  23. Joshi AB, Sawai M, Kearny WR, Kirch LE (2005) J Pharm Sci 94:1912–1927

    Article  CAS  Google Scholar 

  24. Herrman KA, Wysocski VH (2005) J Am Soc Mass Spectrom 16:1067–1080

    Article  Google Scholar 

  25. Oliyai C, Borchardt RT (1993) Pharm Res 10:95–102

    Article  CAS  Google Scholar 

  26. Stewart JJP (1989) J Comput Chem 10:221–264

    Article  CAS  Google Scholar 

  27. Parr RG, Young W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  28. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  29. Khon W, Sham L (1965) J Phys Rev A 140:1133–1138

    Article  Google Scholar 

  30. Beck AD (1993) J Chem Phys 98:5648–5652

    Article  Google Scholar 

  31. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Madura J, Jorgensen WL (1986) J Am Chem Soc 108:2517–2527

    Article  CAS  Google Scholar 

  33. Tomasi J, Mennucci B, Cancés E (1999) J Mol Struct (THEOCHEM) 464:211–226

    Article  CAS  Google Scholar 

  34. Cancès ET, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  35. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  36. Mennucci B, Cancès ET, Tomasi J (1997) J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  37. Cossi M, Barone V (1998) J Chem Phys 109:6246–6254

    Article  CAS  Google Scholar 

  38. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  39. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  40. Frisch MJ et al (2003) Gaussian 03. Revision B.03. Gaussian, Pittsburgh

    Google Scholar 

  41. Flükiger P, Lüthi HP, Portmann S, Weber J (2000) MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno

    Google Scholar 

  42. Ochterski JW (2000) Thermochemistry in Gaussian. Gaussian, Pittsburgh

    Google Scholar 

  43. Ruangpornvisuti V (2009) Int J Quant Chem 109:275–284

    Article  CAS  Google Scholar 

  44. Bravo-Perez G, Alvarez-Idaboy JR, Cruz-Torres A, Ruiz ME (2002) Phys Chem A 106:4645–4650

    Article  CAS  Google Scholar 

  45. Wigner EZ (1932) Phys Chem B 19:203–216

    Google Scholar 

  46. Hirschfelder JO, Wigner E (1939) J Chem Phys 7:616–628

    Article  CAS  Google Scholar 

  47. Bell RP (1980) The tunnel effect in chemistry. Chapman and Hall, London

    Book  Google Scholar 

  48. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  49. Sang-aroon W, Ruangpornvisuti V (2013) J Mol Model 19(9):3627–3636

    Article  CAS  Google Scholar 

  50. DaCosta H, Fan M (2012) Rate constant calculation for thermal reactions: methods and applications. Wiley, Hoboken, NJ

    Google Scholar 

  51. Zhang S, Basile FJ (2007) Proteome Res 6:1700–1704

    Article  CAS  Google Scholar 

  52. Loudon GM (1983) Organic chemistry. Addison-Wesley, Reading, MA

    Google Scholar 

  53. Geiger T, Clarke S (1987) J Biol Chem 262:785–794

    CAS  Google Scholar 

  54. Voorter CE, de Haard-Hoekman WA, van den Oetelaar PJ, Bloemendal H, de Jong WW (1988) J Biol Chem 263:19020–19023

    CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported financially by The Thailand Research Fund, co-funded by The Commission of Higher Education and The Faculty of Engineering, Rajamangala University of Technology Isan, Khonkaen campus through the young academic research grant no. MRG5380243 to W.S., which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wichien Sang-aroon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sang-aroon, W., Amornkitbamrung, V. & Ruangpornvisuti, V. A density functional theory study on peptide bond cleavage at aspartic residues: direct vs cyclic intermediate hydrolysis. J Mol Model 19, 5501–5513 (2013). https://doi.org/10.1007/s00894-013-2054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2054-y

Keywords

Navigation