Skip to main content

Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2)

Abstract

Understanding the nature of noncovalent interactions between nonpolar small molecules is not only theoretically interesting but also important for practical purposes. The interaction mechanism of three prototype dimers (H2)2, (N2)2, and (H2)(N2) are investigated by state-of-the-art quantum chemistry calculations and energy decomposition analysis. It is shown that their configuration preferences are essentially controlled by the electrostatic component rather than the dispersion effect though the monomers have zero dipole moment. These configuration preferences can also be fairly well and conveniently interpreted by visually examining the electrostatic potential map.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Burton PG, Senff UE (1982) J Chem Phys 76:6073–6087

    Article  CAS  Google Scholar 

  2. 2.

    Carmichael M, Chenoweth K, Dykstra CE (2004) J Phys Chem A 108:3143–3152

    Article  CAS  Google Scholar 

  3. 3.

    Diep P, Johnson JK (2000) J Chem Phys 112:4465–4473

    Article  CAS  Google Scholar 

  4. 4.

    Donchev AG, Galkin NG, Tarasov VI (2007) J Chem Phys 126:174307–174310

    Article  CAS  Google Scholar 

  5. 5.

    Hobza P, Schneider B, Sauer J, Čársky P, Zahradník R (1987) Chem Phys Lett 134:418–422

    Article  CAS  Google Scholar 

  6. 6.

    Kochanski E (1973) J Chem Phys 58:5823–5831

    Article  CAS  Google Scholar 

  7. 7.

    Kochanski E, Roos B, Siegbahn P, Wood MH (1973) Theor Chem Accounts 32:151–159

    CAS  Google Scholar 

  8. 8.

    Ree FH, Bender CF (1979) J Chem Phys 71:5362–5375

    Article  CAS  Google Scholar 

  9. 9.

    Senff UE, Burton PC (1989) Aust J Phys 42:47–58

    Article  CAS  Google Scholar 

  10. 10.

    Tapia O, Bessis G (1972) Theor Chem Accounts 25:130–137

    CAS  Google Scholar 

  11. 11.

    Wind P, Røeggen I (1992) Chem Phys 167:263–275

    Article  CAS  Google Scholar 

  12. 12.

    Berns RM, van der Avoird A (1980) J Chem Phys 72:6107–6116

    Article  CAS  Google Scholar 

  13. 13.

    Böhm H-J, Ahlrichs R (1985) Mol Phys 55:1159–1169

    Article  Google Scholar 

  14. 14.

    van der Avoird A, Wormer PES, Jansen APJ (1986) J Chem Phys 84:1629–1635

    Article  Google Scholar 

  15. 15.

    Uhlík F, Slanina Z, Hinchliffe A (1993) J Mol Struct (THEOCHEM) 282:271–275

    Article  Google Scholar 

  16. 16.

    Stallcop JR, Partridge H (1997) Chem Phys Lett 281:212–220

    Article  CAS  Google Scholar 

  17. 17.

    Wada A, Kanamori H, Iwata S (1998) J Chem Phys 109:9434–9438

    Article  CAS  Google Scholar 

  18. 18.

    Couronne O, Ellinger Y (1999) Chem Phys Lett 306:71–77

    Article  CAS  Google Scholar 

  19. 19.

    Jafari MHK, Maghari A, Shahbazian S (2005) Chem Phys 314:249–262

    Article  CAS  Google Scholar 

  20. 20.

    Gomez L, Bussery-Honvault B, Cauchy T, Bartolomei M, Cappelletti D, Pirani F (2007) Chem Phys Lett 445:99–107

    Article  CAS  Google Scholar 

  21. 21.

    Cappelletti D, Pirani F, Bussery-Honvault B, Gomez L, Bartolomei M (2008) Phys Chem Chem Phys 10:4281–4293

    Article  CAS  Google Scholar 

  22. 22.

    Salazar MC, Paz JL, Hernández AJ (1999) J Mol Struct (THEOCHEM) 464:183–189

    Article  CAS  Google Scholar 

  23. 23.

    Buryak I, Lokshtanov S, Vigasin A (2012) J Chem Phys 137:114308–114308

    Article  Google Scholar 

  24. 24.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vrevon T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Menucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomparts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng C-Y, Namayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong M-W, Gonzalez C, Pople JA (2004) Gaussian 03, E.01st edn. Gaussian, Inc, Wallingford

    Google Scholar 

  25. 25.

    Dunning JTH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  26. 26.

    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  27. 27.

    Papajak E, Truhlar DG (2010) J Chem Theory Comput 7:10–18

    Article  Google Scholar 

  28. 28.

    Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252

    Article  CAS  Google Scholar 

  29. 29.

    Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  30. 30.

    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  31. 31.

    Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  32. 32.

    Zhao Y, Truhlar D (2008) Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  33. 33.

    Peverati R, Truhlar DG (2011) J Phys Chem Lett 2:2810–2817

    Article  CAS  Google Scholar 

  34. 34.

    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104–154119

    Article  Google Scholar 

  35. 35.

    Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  36. 36.

    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  37. 37.

    Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  38. 38.

    Stewart JP (2013) J Mol Model 19:1–32

    Article  CAS  Google Scholar 

  39. 39.

    MOPAC2012, James JP Stewart, Stewart Computational Chemistry, Version 13.159W web: HTTP://OpenMOPAC.net

  40. 40.

    MOLPRO, version 2008.1, a package of ab initio programs, Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M and others, see http://www.molpro.net

  41. 41.

    Heßelmann A, Jansen G (2003) Chem Phys Lett 367:778–784

    Article  Google Scholar 

  42. 42.

    Heßelmann A, Jansen G (2003) Phys Chem Chem Phys 5:5010–5014

    Article  Google Scholar 

  43. 43.

    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  44. 44.

    Multiwfn website: http://Multiwfn.codeplex.com. Accessed 10 Aug 2013

  45. 45.

    Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  46. 46.

    Grimme S (2011) WIREs: Comput Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  47. 47.

    Li Q, Yin P, Liu Y, Tang AC, Zhang H, Sun Y (2003) Chem Phys Lett 375:470–476

    Article  CAS  Google Scholar 

  48. 48.

    Kim C, Kim SJ, Lee Y, Kim Y (2000) Bull Korean Chem Soc 21:510–514

    CAS  Google Scholar 

  49. 49.

    Jaeger HM, Swenson DWH, Dykstra CE (2006) J Phys Chem A 110:6399–6407

    Article  CAS  Google Scholar 

  50. 50.

    Buckingham AD (1959) Q Rev Chem Soc 13:183–214

    Article  Google Scholar 

  51. 51.

    Buckingham AD, Cordle JE (1974) Mol Phys 28:1037–1047

    Article  CAS  Google Scholar 

  52. 52.

    Birnbaum G, Cohen ER (1976) Mol Phys 32:161–167

    Article  CAS  Google Scholar 

  53. 53.

    Murray JS, Politzer P (2011) WIREs: Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  54. 54.

    Politzer P, Murray JS (1991) Molecular electrostatic potentials and chemical reactivity. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 2. Wiley, New York, pp 273–312

    Chapter  Google Scholar 

  55. 55.

    Politzer P, Murray JS (2009) The electrostatic potential as a guide to molecular interactive behavior. In: Chattaraj PK (ed) Chemical reactivity theory: A density functional view. CRC, Boca Raton

    Google Scholar 

  56. 56.

    Murray JS, Politzer P (1998) Electrostatic potentials: Chemical applications. Encyclopedia of computational chemistry, vol 2. Wiley, West Sussex

    Google Scholar 

  57. 57.

    Lu T, Chen F (2012) J Mol Graph Model 38:314–323

    Article  Google Scholar 

  58. 58.

    Brinck T, Murray JS, Politzer P (1992) Mol Phys 76:609–617

    Article  CAS  Google Scholar 

  59. 59.

    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (Project No. 21173020) for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feiwu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.29 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, T., Chen, F. Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2). J Mol Model 19, 5387–5395 (2013). https://doi.org/10.1007/s00894-013-2034-2

Download citation

Keywords

  • Coupled cluster
  • Density functional theory
  • Electrostatic potential
  • Energy decomposition
  • Noncovalent interaction
  • Quadrupole moment