Skip to main content
Log in

Mechanistic investigation of methanol to propene conversion catalyzed by H-beta zeolite: a two-layer ONIOM study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Two-layer ONIOM calculations have been carried out to study methanol to propene (MTP) conversion reactions catalyzed by H-beta zeolite. On the basis of the so-called side-chain hydrocarbon pool (HCP) mechanism, this work proposes the complete catalytic cycle pathway for the MTP reaction. The cycle starts from the methylation of pentamethylbenzene (PMB), which leads to the formation of hexamethylbenzenium ion (hexaMB+). Subsequent steps involving deprotonation, methylation, an internal H-shift, and a unimolecular CH3-shift are required to produce propene and ethene. The calculated activation barriers and reaction energy data indicate that propene is the more favored product, rather than ethene, from both kinetic and thermodynamic perspectives, which is consistent with experimental observations. In addition, the calculations suggest that the activation barriers of the reaction steps decrease in the order: internal H-shift > methylation > unimolecular CH3-shift ≥ deprotonation. In the methylation step, methylation of the exocyclic double bond is easier than methylation of the ring carbons on the aromatic benzene derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stöcker M (1999) Microporous Mesoporous Mater 29:3–48

    Article  Google Scholar 

  2. Ladwig PK, Asplin JE, Stuntz GF, Wachter WA, Henry BE (2000) US Patent 6,069,287 (assigned to Exxon Research and Engineering Corporation)

  3. Svelle S, Olsbye U, Joensen F, Bjørgen M (2007) J Phys Chem C 111:17981–17984

    Article  CAS  Google Scholar 

  4. Song WG, Haw JF, Nicholas JB, Heneghan CS (2000) J Am Chem Soc 122:10726–10727

    Article  CAS  Google Scholar 

  5. Sassi A, Wildman MA, Ahn HJ, Prasad P, Nicholas JB, Haw JF (2002) J Phys Chem B 106:2294–2303

    Article  CAS  Google Scholar 

  6. Bjørgen M, Bonino F, Kolboe S, Lillerud KP, Zecchina A, Bordiga S (2003) J Am Chem Soc 125:15863–15868

    Article  Google Scholar 

  7. Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud KP, Kolboe S, Bjørgen M (2006) J Am Chem Soc 128:14770–14771

    Article  CAS  Google Scholar 

  8. Arstad B, Kolboe S, Swang O (2002) J Phys Chem B 106:12722–12726

    Article  CAS  Google Scholar 

  9. Arstad B, Nicholas JB, Haw JF (2004) J Am Chem Soc 126:2991–3001

    Article  CAS  Google Scholar 

  10. Vos AM, Rozanska X, Schoonheydt RA, van Santen RA, Hutschka F, Hafner J (2001) J Am Chem Soc 123:2799–2809

    Article  CAS  Google Scholar 

  11. Wang CM, Wang YD, Xie ZK, Liu ZP (2009) J Phys Chem C 113:4584–4591

    Article  CAS  Google Scholar 

  12. Boronat M, Viruela PM, Corma A (2004) J Am Chem Soc 126:3300–3309

    Article  CAS  Google Scholar 

  13. Nieminen V, Sierka M, Murzin DY, Sauer J (2005) J Catal 231:393–404

    Article  CAS  Google Scholar 

  14. Joshi YV, Thomson KT (2005) J Catal 230:440–463

    Article  CAS  Google Scholar 

  15. Vreven T, Morokuma K (2000) J Comput Chem 21:1419–1432

    Article  CAS  Google Scholar 

  16. Vreven T, Mennucci B, da Silva CO, Morokuma K, Tomasi J (2001) J Chem Phys 115:62–72

    Article  CAS  Google Scholar 

  17. Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JA, Morokuma K, Frisch MJ (2006) J Chem Theory Comput 2:815–826

    Article  CAS  Google Scholar 

  18. Lesthaeghe D, Sterck BD, Speybroeck VV, Marin GB, Waroquier M (2007) Angew Chem Int Ed 46:1311–1314

    Article  CAS  Google Scholar 

  19. Mynsbrugge JVD, Visur M, Olsbye U, Beato P, Bjørgen M, Speybroeck VV, Svelle S (2012) J Catal 292:201–212

    Article  Google Scholar 

  20. Sun YX, Yang J, Zhao LF, Dai JX, Sun H (2010) J Phys Chem C 114:5975–5984

    Article  CAS  Google Scholar 

  21. Newsam JM, Treacy MMJ, Koetsier WT, der Gruyter CB (1988) Proc R Soc Lond A 420:375–405

    Article  CAS  Google Scholar 

  22. Maseras F, Morokuma K (1995) J Comput Chem 16:1170–1179

    Article  CAS  Google Scholar 

  23. Morokuma K (2003) Bull Korean Chem Soc 24:797–801

    Article  CAS  Google Scholar 

  24. Zhao Y, Truhlar DG (2008) J Phys Chem C 112:6860–6868

    Article  CAS  Google Scholar 

  25. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  26. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  27. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  28. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Kumsapaya C, Bobuatong K, Khongpracha P, Tantirungrotechai Y, Limtrakul J (2009) J Phys Chem C 113:16128–16137

    Article  CAS  Google Scholar 

  31. Heinz H, Suter UW (2004) J Phys Chem B 108:18341–18352

    Article  CAS  Google Scholar 

  32. Asada N, Fedorov DG, Kitaura K, Nakanishi I, Merz KM Jr (2012) J Phys Chem Lett 3:2604–2610

    Article  CAS  Google Scholar 

  33. Otsuka M, Tsuchida N, Ikeda Y, Kimura Y, Mutoh Y, Ishii Y, Takano K (2012) J Am Chem Soc 134:17746–17756

    Article  CAS  Google Scholar 

  34. Li X, Chung LW, Paneth P, Morokuma K (2009) J Am Chem Soc 131:5115–5125

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.01. Gaussian, Inc., Wallingford

  36. Hill IM, Hashimi SA, Bhan A (2012) J Catal 285:115–123

    Article  CAS  Google Scholar 

  37. Svelle S, Visur M, Olsbye U, Saepurahman S, Bjørgen M (2011) Top Catal 54:897–906

    Article  CAS  Google Scholar 

  38. Maihom T, Boekfa B, Sirijaraensre J, Nanok T, Probst M, Limtrakul J (2009) J Phys Chem C 113:6654–6662

    Article  CAS  Google Scholar 

  39. Saepurahman S, Visur M, Olsbye U, Bjørgen M, Svelle S (2011) Top Catal 54:1293–1301

    Article  CAS  Google Scholar 

  40. Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) J Am Chem Soc 131:816–825

    Article  CAS  Google Scholar 

  41. Doering W v E, Saunders M, Boyton HG, Earhart HW, Wadley EF, Edwards WR, Laber G (1958) Tetrahedron 4:178–185

    Article  CAS  Google Scholar 

  42. Li JZ, Wei YX, Chen JR, Tian P, Su X, Xu S, Qi Y, Wang QY, Zhou Y, He YL, Liu ZM (2012) J Am Chem Soc 134:836–839

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundation of China (nos. 21203118), the Training Program for Young College Teachers in Shanghai (ZZyyy12005), and the Scientific Research Foundation of Shanghai Institute of Technology (grant YJ2012-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingxin Sun or Sheng Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

894_2013_2030_MOESM1_ESM.doc

Data from S-value testing, activation barriers and reaction energies for the methylation step of HMB and the protonation step of HMMC, optimized structural parameters for the formation and methylation of HMEC, and optimized structural parameters for unimolecular CH3-shift reactions on H-beta zeolite. (DOC 494 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Han, S. Mechanistic investigation of methanol to propene conversion catalyzed by H-beta zeolite: a two-layer ONIOM study. J Mol Model 19, 5407–5422 (2013). https://doi.org/10.1007/s00894-013-2030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2030-6

Keywords

Navigation