Skip to main content
Log in

Modeling the scavenging activity of ellagic acid and its methyl derivatives towards hydroxyl, methoxy, and nitrogen dioxide radicals

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The reaction mechanisms involved in the scavenging of hydroxyl (OH·), methoxy (OCH3 ·), and nitrogen dioxide (NO2 ·) radicals by ellagic acid and its monomethyl and dimethyl derivatives were investigated using the transition state theory and density functional theory. The calculated Gibbs barrier energies associated with the abstraction of hydrogen from the hydroxyl groups of ellagic acid and its monomethyl and dimethyl derivatives by an OH· radical in aqueous media were all found to be negative. When NO2 · was the radical involved in hydrogen abstraction, the Gibbs barrier energies were much larger than those calculated when the OH· radical was involved. When OCH3 · was the hydrogen-abstracting radical, the Gibbs barrier energies lay between those obtained with OH· and NO2 · radicals. Therefore, the scavenging efficiencies of ellagic acid and its monomethyl and dimethyl derivatives towards the three radicals decrease in the order OH· >> OCH3 · > NO2 ·. Our calculated rate constants are broadly in agreement with those obtained experimentally for hydrogen abstraction reactions of ellagic acid with OH· and NO2· radicals.

Reactant complex (RC), transition state (TS), and product complex (PC) for hydrogen abstraction from ellagic acid by an OH· radical

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wiseman H, Halliwell B (1996) J Biochem 313:17–29

    CAS  Google Scholar 

  2. Marnett LJ (2000) Carcinogenesis 21:361–370

    Article  CAS  Google Scholar 

  3. Hussain SP, Hofseth LJ, Harris CC (2003) Nat Rev Cancer 3:276–285

    Article  CAS  Google Scholar 

  4. Loft S, Poulsen HE (2006) J Mol Med 74:297–312

    Article  Google Scholar 

  5. Doll R, Peto R (1981) J Natl Cancer Inst 66:1191–1308

    CAS  Google Scholar 

  6. Chakraborty P, Kumar S, Dutta D, Gupta V (2009) J Pharm Tech 2:238–244

    CAS  Google Scholar 

  7. Ames BN, Shigenaga MK, Hagen TM (1993) Proc Natl Acad Sci U S A 90:7915–7922

    Article  CAS  Google Scholar 

  8. Mecocci P, Fano G, Fulle S, Macgarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF (1999) Free Rad Biol Med 26:303–308

    Article  CAS  Google Scholar 

  9. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Annal Neurol 34:609–616

    Article  CAS  Google Scholar 

  10. Squadrito GL, Pryor WA (1998) Free Rad Biol Med 25:392–403

    Article  CAS  Google Scholar 

  11. Halliwell B, Gutterridge JMC (1984) J Biochem 219:1–14

    CAS  Google Scholar 

  12. Yarkony DR, Schaefer HF, Rothenberg S (1974) J Am Chem Soc 96:656–659

    Article  CAS  Google Scholar 

  13. Halliwell B (1999) Mut Res 443:37–52

    Article  CAS  Google Scholar 

  14. Pryor WA, Stone K (1993) Ann NY Acad Sci 686:12–28

    Article  CAS  Google Scholar 

  15. Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, Menezes LD (2002) Free Rad Biol Med 32:841–859

    Article  CAS  Google Scholar 

  16. Shukla PK, Mishra PC (2008) J Phys Chem B 112:4779–4789

    Article  CAS  Google Scholar 

  17. Niles JC, Wishnok JS, Tannenbaum SR (2006) Nitric Oxide 14:109–121

    Article  CAS  Google Scholar 

  18. Sodum RS, Fiala ES (2001) Chem Res Toxicol 14:438–450

    Article  CAS  Google Scholar 

  19. Pavlovic R, Santaniello E (2007) J Pharm Pharmacol 59:1687–1695

    Article  CAS  Google Scholar 

  20. Jena NR, Mishra PC, Suhai S (2009) J Phys Chem B 113:5633–5644

    Article  CAS  Google Scholar 

  21. Agnihotri N, Mishra PC (2009) J Phys Chem B 113:3129–3138

    Article  CAS  Google Scholar 

  22. Agnihotri N, Mishra PC (2010) J Phys Chem B 114:7391–7404

    Article  CAS  Google Scholar 

  23. Shukla MK, Mishra PC (1995) Spectrochim Acta A 51:831–838

    Article  Google Scholar 

  24. Agnihotri N, Mishra PC (2009) J Phys Chem B 113:12096–12104

    Article  CAS  Google Scholar 

  25. Tiwari S, Mishra PC (2011) J Mol Model 17:59–72

    Article  CAS  Google Scholar 

  26. Shukla MK, Mishra PC (1996) J Mol Struct (Theochem) 377:247–259

    Article  CAS  Google Scholar 

  27. Shukla PK, Mishra PC (2007) J Phys Chem B 111:4603–4615

    Article  CAS  Google Scholar 

  28. Yadav A, Mishra PC (2012) Chem Phys 405:76–88

    Article  CAS  Google Scholar 

  29. Yadav A, Mishra PC (2013) J Mol Model 19:767–777

    Article  CAS  Google Scholar 

  30. Galano A, Alvarez-Idaboy JR (2011) R Soc Chem 1:1763–1771

    CAS  Google Scholar 

  31. Agnihotri N, Mishra PC (2011) J Phys Chem A 115:14221–14232

    Article  CAS  Google Scholar 

  32. Mates JM, Perez-Gomez C, de Castro IN (1999) Clin Biochem 32:595–603

    Article  CAS  Google Scholar 

  33. Mullen W, McGinn J, Lean ME, MacLean MR, Gardner P, Duthie GG, Yokota T, Crozier A (2002) J Agric Food Chem 50:5191–5196

    Article  CAS  Google Scholar 

  34. Radtke J, Linseisen J, Wolfram G (1998) Ernaehrungswiss 37:190–197

    Article  CAS  Google Scholar 

  35. Mohajeri A, Asemani SS (2009) J Mol Struct 930:15–20

    Article  CAS  Google Scholar 

  36. Vattem DA, Shetty K (2005) J Food Biochem 29:234–266

    Article  CAS  Google Scholar 

  37. Da Silva SL, Calgarotto AK, Chaar JS, Marangoni S (2008) Toxicon 52:655–666

    Article  Google Scholar 

  38. Zafrilla P, Ferreres F, Francisco AT (2001) J Agric Food Chem 49:3651–3655

    Article  CAS  Google Scholar 

  39. Ancos B, Gonzalez EM, Cano P (2000) J Agric Food Chem 48:4565–4570

    Article  Google Scholar 

  40. Hakkinen SH, Karenlampi SO, Mykkanen H, Heinonen IM, Torronen AR (2000) Eur Food Res Tech 212:75–80

    Article  CAS  Google Scholar 

  41. Daniel EM, Krupnick AS, Heur YH, Blinzler JA, Nims RW, Stoner GD (1989) J Food Comp Anal 2:385–398

    Article  Google Scholar 

  42. Goldberg DM, Hoffman B, Yang J, Soleas GJ (1999) J Agric Food Chem 47:3978–3985

    Article  CAS  Google Scholar 

  43. Bobinaite R, Viskelis P, Venskutonis PR (2012) Food Chem 132:1495–1501

    Article  CAS  Google Scholar 

  44. Zhang J, Xiong Y, Peng B, Gao H, Zhou Z (2011) Comp Theo Chem 963:148–153

    Article  CAS  Google Scholar 

  45. Teel RW, Babcock MS, Dixit R, Stoner GD (1986) Cell Biol Toxicol 2:53–62

    Article  CAS  Google Scholar 

  46. Zhang Z, Hamilton SM, Stewart C, Strother A, Teel RW (1993) Anticancer Res 13:2341–2346

    Google Scholar 

  47. Wood AW, Huang MT, Chang RL, Newmark HL, Lehr RE, Yagi H, Sayer JM, Jerina DM, Conney AH (1982) Proc Natl Acad Sci USA 79:5513–5517

    Google Scholar 

  48. Hassoun EA, Walter AC, Alsharif NZ, Stohs SJ (1997) Toxicology 124:27–37

    Article  CAS  Google Scholar 

  49. Priyadarsini KI, Khopde SM, Santosh SK, Mohan H (2002) J Agric Food Chem 50:2200–2206

    Article  CAS  Google Scholar 

  50. Barch DH, Rundhaugen LM, Stoner GD, Pillay NS, Rosche WA (1996) Carcinogenesis 17:265–269

    Article  CAS  Google Scholar 

  51. Muthenna P, Akileshwari C, Reddy GB (2012) J Biochem 442:221–230

    Article  CAS  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  53. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  54. Miertus S, Tomasi J (1982) Chem Phys 65:239–245

    Article  CAS  Google Scholar 

  55. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  56. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  57. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  58. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  59. Laidler KJ (2004) Chemical kinetics, 3rd edn. Pearson, Patparganj

  60. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem, Shawnee Mission

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A1. Gaussian, Wallingford

  62. Silva PJ, Ramos MJ (2011) Comp Theo Chem 966:120–126

    Article  CAS  Google Scholar 

  63. Ess DH, Houk KN (2005) J Phys Chem A 109:9542–9553

    Article  CAS  Google Scholar 

  64. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  65. Rossi M, Erlebacher J, Zacharias DE, Carrel HL, Iannucci B (1991) Carcinogenesis 12:2227–2232

    Article  CAS  Google Scholar 

  66. Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173–1183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grants Commission (New Delhi) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phool Chand Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.86 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, M.K., Mishra, P.C. Modeling the scavenging activity of ellagic acid and its methyl derivatives towards hydroxyl, methoxy, and nitrogen dioxide radicals. J Mol Model 19, 5445–5456 (2013). https://doi.org/10.1007/s00894-013-2023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2023-5

Keywords

Navigation