Skip to main content

Advertisement

Log in

Electronic, ductile, phase transition and mechanical properties of Lu-monopnictides under high pressures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural, elastic and electronic properties of lutatium-pnictides (LuN, LuP, LuAs, LuSb, and LuBi) were analyzed by using full-potential linearized augmented plane wave within generalized gradient approximation in the stable rock-salt structure (B1 phase) with space group Fm-3m and high-pressure CsCl structure (B2 phase) with space group Pm-3m. Hubbard-U and spin-orbit coupling were included to predict correctly the semiconducting band gap of LuN. Under compression, these materials undergo first-order structural transitions from B1 to B2 phases at 241, 98, 56.82, 25.2 and 32.3 GPa, respectively. The computed elastic properties show that LuBi is ductile by nature. The electronic structure calculations show that LuN is semiconductor at ambient conditions with an indirect band gap of 1.55 eV while other Lu-pnictides are metallic. It was observed that LuN shows metallization at high pressures. The structural properties, viz, equilibrium lattice constant, bulk modulus and its pressure derivative, transition pressure, equation of state, volume collapse, band gap and elastic moduli, show good agreement with available data.

Equation of state of Lu-pnictides

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–d
Fig. 7a–d
Fig. 8a–d
Fig. 9a–d
Fig. 10a–e

Similar content being viewed by others

References

  1. Hullinger F (1979) In: Gchneidnet KA, Eyring L (eds) Handbook of physics and chemistry of rare earths, vol 4. North Holland, Amsterdam

  2. Yakovkin IN, Komesu T, Dowben PA (2002) Phys Rev B66:035406(1)–(8)

  3. Lambrecht WRL (2000) Phys Rev B62:13538–13545

    Google Scholar 

  4. Leger JM (1993) Physica B190:84–91

    Google Scholar 

  5. Shirotani I, Yamanashi K, Hayashi J, Ishimatsu N, Shimomura O, Kikegawa T (2003) Solid State Commun 127:573–576

    Article  CAS  Google Scholar 

  6. Errandonea D, Boehler R, Ross M (2000) Phys Rev Lett 85:3444–3447

    Article  CAS  Google Scholar 

  7. Hayashi J, Shirotani I, Tanaka Y, Adachi T, Shimomura O, Kikegawa T (2000) Solid State Commun 114:561–565

    Article  CAS  Google Scholar 

  8. De M, De SK (1999) J Phys Chem Solids 60:337–346

    Article  CAS  Google Scholar 

  9. Sheng QJ, Cooper RR, Lim SP (1993) J Appl Phys 73:5409–5411

    Article  CAS  Google Scholar 

  10. Li DX, Haga Y, Shida H, Suzuki T, Kwon YS (1996) Phys Rev B54:10483–10491

    Google Scholar 

  11. Li DX, Haga Y, Shida H, Suzuki T, Kwon YS, Kubo G (1997) J Phys: Condens Matter 9:10777–10788

    Article  CAS  Google Scholar 

  12. Tomimatsu T, Koyama K, Yoshida M, Li D, Motokawa M (2003) Phys Rev B67:014406(1)–(4)

  13. Petukhov AG, Lambrecht WRL, Segall B (1996) Phys Rev B53:4324–4339

    Google Scholar 

  14. Hasegawa A, Yanase A (1977) J Phys Soc Jpn 42:492–498

    Article  CAS  Google Scholar 

  15. Liechtenstein AI, Antropov VP, Harmon BN (1994) Phys Rev B49:10770–10773

    Google Scholar 

  16. Schoenes J, Repond P, Hullinger F, Lim SP, Cooper BR (1998) J Magn Magn Mater 177–181:1046–1047

    Article  Google Scholar 

  17. Pagare G, Chouhan SS, Soni P, Sanyal SP, Rajagopalan M (2010) Comput Mater Sci 50:538–544

    Article  CAS  Google Scholar 

  18. Chouhan SS, Pagare G, Soni P, Sanyal SP (2011) AIP Conf Proc 1349:97–98

    CAS  Google Scholar 

  19. Harima H, Kasuya T (1985) J Magn Magn Mater 52:370–372

    Article  CAS  Google Scholar 

  20. Sjӧstedt E, Nordstrom L, Singh DJ (2000) Solid State Commun 114:15–20

    Article  Google Scholar 

  21. Blaha P, Schwarz K, Madsen GHK, Kuasnicka D, Luitz J (2001) WIEN2k an augmented plane wave+local orbitals program for calculating crystal properties. Technical Universitat Wien Austria ISBN 3-9501031-1-2

  22. Perdew JP, Burke K, Ernzerhop M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  23. Anisimov VI, Solovyev IV, Korotin MA, Czyzyk MT, Sawatzky GA (1993) Phys Rev B48:16929–16934

    Google Scholar 

  24. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Phys Rev B52:R5467–R5470

    Google Scholar 

  25. Madsen GHK, Novak P (2005) Euro Phys Lett 69:777–783

    Article  CAS  Google Scholar 

  26. Monkhorst HJ, Pack JD (1976) Phys Rev B13:5188–5192

    Google Scholar 

  27. Sun Z, Li S, Ahuja R, Schneide JM (2004) Solid State Commun 129:589–592

    Article  CAS  Google Scholar 

  28. Jansiukiewicz C, Karpus V (2003) Solid State Commun 128:167–169

    Article  Google Scholar 

  29. Wachter P, Filzmoser M, Rebizant J (2001) Physica B293:199–223

    Google Scholar 

  30. Duan CG, Sabirianov RF, Mei WN, Dowben PA, Jaswal SS, Tsymbal EY (2007) J Phys Condensed Matter 19:315220 (1–32)

    Google Scholar 

  31. Hayashi J, Shirotani I (2001) Memoirs Muroran Inst Technol 51:191–199

    Google Scholar 

  32. Mehl MJ, Osburn JE, Papaconstantopoulous DA, Klein BM (1990) Phys Rev B41:10311–10323

    Google Scholar 

  33. Mehl MJ (1993) Phys Rev B47:2493–2500

    Google Scholar 

  34. Hill R (1952) Proc Phys Soc London A65:349–354

    Google Scholar 

  35. Gupta DC, Kulshrestha S (2011) J Alloys Compd 509:4653–4659

    Article  CAS  Google Scholar 

  36. Pettifor DG (1992) Mater Sci Technol 8:345–349

    Article  CAS  Google Scholar 

  37. Pugh SF (1954) Phil Mag 45:823–843

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grants Commission (UGC), New Delhi (Govt. of India) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh C. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, D.C., Bhat, I.H. Electronic, ductile, phase transition and mechanical properties of Lu-monopnictides under high pressures. J Mol Model 19, 5343–5354 (2013). https://doi.org/10.1007/s00894-013-2021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2021-7

Keywords

Navigation