Skip to main content
Log in

Density functional theoretical study on the preferential selectivity of macrocyclic dicyclohexano-18-crown-6 for Sr+2 ion over Th+4 ion during extraction from an aqueous phase to organic phases with different dielectric constants

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The preferential selectivity of dicyclohexano-18-crown-6 (DCH18C6) for bivalent Sr+2 ion over tetravalent Th+4 ion was investigated using generalized gradient approximated (GGA) BP86 and the hybrid B3LYP density functional, employing split valence plus polarization (SV(P)) and triple-zeta valence plus polarization (TZVP) basis sets in conjunction with the COSMO (conductor-like screening model) solvation approach. The calculated theoretical selectivity of DCH18C6 for Sr+2 ion over Th+4 ion was found to be in accord with the selectivity for Sr+2 ion over Th+4 ion observed when performing liquid–liquid extraction experiments in different organic solvents. While 1:1(M:L) stoichiometric complexation reactions can be used to predict the preferential selectivity of Sr2+ ion over Th4+ ion, the results obtained are not consistent with the experimental results observed upon increasing the dielectric constant of the solvent. The calculated theoretical gas-phase data for the free energy of complexation, ∆G, fail to explain the selectivity for Sr+2 ion over Th+4 ion. However, when 1:2 (M:L) stoichiometric complexation reactions (reported in previous X-ray crystallography studies) are considered, correct and consistent results for the selectivity for Sr+2 ion over a wide range of dielectric constants are predicted. The distribution constant for Sr2+ and Th4+ ions was found to gradually increase with increasing dielectric constant of the organic solvent, and was found to be highest in nitrobenzene. The selectivity data calculated from ∆∆G ext are in excellent agreement with the results obtained from solvent extraction experiments.

Experimentally observed separation factors and theoretically predicted values of ΔΔG ext for Sr2+ ion over Th4+ ion with DCH18C6 in a nitrate medium. Solvent extraction with DCH18C6/nitrobenzene shows high selectivity and a high separation factor for Sr2+ over Th4+. DFT was successfully adopted to model the extraction mechanism of Sr2+/Th4+. The free energy of extraction ΔΔG ext failed to predict the experimental selectivity of Sr2+ over Th4+ for 1:1 stoichiometric complexation, but was able to predict this selectivity for 1:2 stoichiometric complexation with Th4+ ion. The ΔΔG ext values for the preferential selection of Sr2+ over Th4+ increase with increasing dielectric constant of the solvent

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Horwitz EP, Dietz ML, Fisher DE (1991) Solv Extr Ion Exch 9:1–25

    Article  CAS  Google Scholar 

  2. Schulz WW, Bray A (1987) Sep Sci Tech 22:191–214

    Article  CAS  Google Scholar 

  3. Pedersen CJ (1967) J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  4. Horwitz EP, Dietz ML, Fisher DE (1990) Solv Extr Ion Exch 8:199–208

    Article  CAS  Google Scholar 

  5. Horwitz EP, Dietz ML, Diamond H, Rogers RD, Leonard RA (1919) In: Schulz WW, Horwitz EP (eds) Chemical pretreatment of nuclear waste for disposal. Plenum, New York, pp 81–99

    Google Scholar 

  6. Rodriguez M, Suhrez JA, Espartero (1996) Nucl Instrum Methods A 369:348–352

  7. Horwitz EP, Dietz ML, Fisher DE (1990) Solv Extr Ion Exch 8:557–565

    Article  CAS  Google Scholar 

  8. Kikuchi Y, Sakamota Y (2000) Anal Chim Acta 403:325–332

    Article  CAS  Google Scholar 

  9. McDowell WJ (1988) Sep Sci Tech 23:1251–1268

    Article  CAS  Google Scholar 

  10. Lumetta GJ, Wagner MJ, Jones EO (1995) Sep Sci Tech 30:1087–1101

    Article  CAS  Google Scholar 

  11. Dietz ML, Horwitz EP, Rogers RD (1995) Solv Extr Ion Exch 13:1–17

    Article  CAS  Google Scholar 

  12. Boda A, De S, Ali SM, Tulshetty S, Khan S, Singh J (2012) J Mol Liq 172:110–118

    Article  CAS  Google Scholar 

  13. Cao-Dolg X, Dolg M (2003) Mol Phys 101:961–969

    Article  Google Scholar 

  14. Dietz ML, Jensen MP (2004) Talanta 62:109–113

    Article  CAS  Google Scholar 

  15. Jensen MP, Dzielawa JA, Rickert P, Dietz ML (2002) J Am Chem Soc 124:10664–10665

    Article  CAS  Google Scholar 

  16. Costes RM, Folcher G, Plurien P, Rigny P (1976) Inorg Nucl Chem Lett 12:13–21

    Article  CAS  Google Scholar 

  17. Ming W, Boyi W, Peiju Z, Wenji W, Jie L (1988) Acta Cryst C44:1913–1916

    Google Scholar 

  18. Rothe J, Denecke MA, Neck V, Muller R, Kim JI (2002) Inorg Chem 41:249–258

    Article  CAS  Google Scholar 

  19. Johansson G, Magini M, Ohtaki H (1991) J Solut Chem 20:775–792

    Article  CAS  Google Scholar 

  20. Bacon WE, Brown GH (1969) J Phys Chem 73:4163–4166

    Article  CAS  Google Scholar 

  21. Sandstrom M, Persson I, Jalilehvand F, Lindquist-Reis P, Spangberg D, Hermansson K (2001) J Synchrotron Rad 8:657–659

    Article  CAS  Google Scholar 

  22. Glendening ED, Feller D (1996) J Phys Chem 100:4790–4797

    Article  CAS  Google Scholar 

  23. Klobukowski M (1992) Can J Chem 70:589–595

    Article  CAS  Google Scholar 

  24. Bauschlicher CW, Sodupe M, Partridge H (1992) J Chem Phys 96:4453–4463

    Article  CAS  Google Scholar 

  25. Kaupp M, Schleyer PV (1992) J Phys Chem 96:7316–7323

    Article  CAS  Google Scholar 

  26. Carl DR, Chatterjee BK, Armentrout PB (2010) J Chem Phys 132:044303

    Google Scholar 

  27. Glendening ED, Feller D (1996) J Am Chem Soc 118:6052–6059

    Article  CAS  Google Scholar 

  28. Boda A, Ali SM, Shenoi MRK, Rao H, Ghosh SK (2011) J Mol Model 17:1091–1108

    Article  CAS  Google Scholar 

  29. Tsushima S, Yang T, Mochizuki Y, Okamoto Y (2003) Chem Phys Lett 375:204–212

    Article  CAS  Google Scholar 

  30. Real F, Trumm M, Vallet V, Schimmelpfennig B, Masella M, Flament JP (2010) J Phys Chem B 114:15913–15924

    Article  CAS  Google Scholar 

  31. Kadi MW, EI-Shahawi MS (2011) J Radioanal Nucl Chem 289:345–351

    Article  CAS  Google Scholar 

  32. Weigend F, Haser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143–152

    Article  CAS  Google Scholar 

  33. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) TURBOMOLE, University of Karlsruhe, Germany, 1988. Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  34. Kaupp M, Schleyer PVR, Stoll H, Preuss HJ (1991) Chem Phys 94:1360–1366

    CAS  Google Scholar 

  35. Cao X, Dolg MJ (2004) Mol Struct (Theochem) 673:203–209

    Article  CAS  Google Scholar 

  36. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  37. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  38. Cao X, Heidelberg D, Clupka J, Dolg M (2010) Inorg Chem 49:10307–10315

    Article  CAS  Google Scholar 

  39. Neese F (2009) Coord Chem Rev 253:526–563

    Article  CAS  Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Klamt A (1995) J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

  43. SCM (2010) ADF2010.01. Scientific Computing & Modelling NV, Amsterdam. http://www.scm.com

  44. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  45. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610

    Article  Google Scholar 

  46. Draye M, Le Buitz G, Foos J, Guy A, Lecrele B, Doutreluingne P, Lemaire M (1997) Sep Sci Tech 32:1725–1737

    Article  CAS  Google Scholar 

  47. De S, Boda A, Ali SM (2010) J Mol Struc (THEOCHEM) 941:90–101

    Article  CAS  Google Scholar 

  48. Boda A, Ali SM (2012) J Phys Chem A 116:8615–8623

    Article  CAS  Google Scholar 

  49. Moreau G, Helm L, Purans J, Merbach AE (2002) J Phys Chem A 106:3034–3043

    Article  CAS  Google Scholar 

  50. Moll H, Denecke MA, Jalilehvand F, Sandstrom M, Grenthe I (1999) Inorg Chem 38:1795–1799

    Article  CAS  Google Scholar 

  51. Chaboy J, Diaz-Moreno S (2011) J Phys Chem A 115:2345–2349

    Article  CAS  Google Scholar 

  52. Wilson RE, Skanthakumar S, Burns PC (2007) Angew Chem Intl Ed 46:8043–8045

    Article  CAS  Google Scholar 

  53. Ciupka J, Cao-Dolg X, Wiebke J, Dolg M (2010) Phys Chem Chem Phys 12:13215–13233

    Article  CAS  Google Scholar 

  54. Marcus YJ (1991) Chem Soc Faraday Trans 87:2995–2999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Computer Division at Bhabha Atomic Research Centre is acknowledged for allowing us to use the Anupam supercomputing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk. M. Ali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 623 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boda, A., Joshi, J.M., Ali, S.M. et al. Density functional theoretical study on the preferential selectivity of macrocyclic dicyclohexano-18-crown-6 for Sr+2 ion over Th+4 ion during extraction from an aqueous phase to organic phases with different dielectric constants. J Mol Model 19, 5277–5291 (2013). https://doi.org/10.1007/s00894-013-2015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2015-5

Keywords

Navigation