Skip to main content

Advertisement

Log in

The study of interactions between DNA and PcrA DNA helicase by using targeted molecular dynamic simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

DNA helicases are important enzymes involved in all aspects of nucleic acid metabolism, ranging from DNA replication and repair to recombination, rescue of stalled replication and translation. DNA helicases are molecular motors. Through conformational changes caused by ATP hydrolysis and binding, they move along the template double helix, break the hydrogen bonds between the two strands and separate the template chains, so that the genetic information can be accessed. In this paper, targeted molecular dynamic simulations were performed to study the important interactions between DNA and PcrA DNA helicase, which can not be observed from the crystal structures. The key residues on PcrA DNA helicase that have strong interactions with both double stranded DNA (ds-DNA) and single stranded DNA (ss-DNA) have been identified, and it was found that such interactions mostly exist between the protein and DNA backbone, which indicates that the translocation of PcrA is independent of the DNA sequence. The simulations indicate that the ds-DNA is separated upon ATP rebinding, rather than ATP hydrolysis, which suggests that the two strokes in the mechanism have two different major roles. Firstly, in the power stroke (ATP hydrolysis), most of the translocations of the bases from one pocket to the next occur. In the relaxation stroke (ATP binding), most of the ‘work’ is being done to ‘melt’ the DNA at the separation fork. Therefore, we propose a mechanism whereby the translocation of the ss-DNA is powered by ATP hydrolysis and the separation of the ds-DNA is powered by ATP binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anand SP, Khan SA (2004) Nucleic Acids Res 32(10):3190

    Article  CAS  Google Scholar 

  2. Hall MC, Matson SW (1999) Mol Microbiol 34:867

    Article  CAS  Google Scholar 

  3. van Brabant AJ, Stan R, Ellis NA (2000) Annu Rev Genomics Hum Genet 1:409

    Article  Google Scholar 

  4. Ellis NA (1997) Curr Opin Genet Dev 7(3):354

    Article  CAS  Google Scholar 

  5. Mackintosh SG, Raney KD (2006) Nucleic Acids Res 34(15):4154

    Article  CAS  Google Scholar 

  6. Subramanya HS, Bird LE, Brannigan JA, Wigley DB (1996) Nature 384:379

    Article  CAS  Google Scholar 

  7. Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB (1999) Cell 97(1):75

    Article  CAS  Google Scholar 

  8. Bird LE, Brannigan JA, Subramanya HS, Wigley DB (1998) Nucleic Acids Res 26(11):2686

    Article  CAS  Google Scholar 

  9. Caruthers JM, McKay DB (2002) Curr Opin Struct Biol 12(1):123

    Article  CAS  Google Scholar 

  10. Dillingham MS, Wigley DB, Webb MR (2000) Biochemistry 39(1):205

    Article  CAS  Google Scholar 

  11. Dillingham MS, Wigley DB, Webb MR (2002) Biochemistry 41(2):643

    Article  CAS  Google Scholar 

  12. Cox K, Watson T, Soultanas P, Hirst JD (2003) Proteins 52(2):254

    Article  CAS  Google Scholar 

  13. Soultanas P, Dillingham MS, Wiley P, Webb MR, Wigley DB (2000) EMBO J 19(14):3799

    Article  CAS  Google Scholar 

  14. Soultanas P, Dillingham MS, Velankar SS, Wigley DB (1999) J Mol Biol 290(1):137

    Article  CAS  Google Scholar 

  15. Withers IM, Mazanetz MP, Wang H, Fischer PM, Laughton CA (2008) J Chem Inf Model 48(7):1448. doi:10.1021/ci7004725, URL http://www.ncbi.nlm.nih.gov/pubmed/18553961

    Article  CAS  Google Scholar 

  16. Dillingham MS, Soultanas P, Wiley P, Webb MR, Wigley DB (2001) Proc Natl Acad Sci U S A 98(15):8381

    Article  CAS  Google Scholar 

  17. Bertram RD, Hayes CJ, Soultanas P (2002) Biochemistry 41(24):7725

    Article  CAS  Google Scholar 

  18. Abbas S, Bertram RD, Hayes CJ (2001) Org Lett 3:3365

    Article  CAS  Google Scholar 

  19. Wang H, Laughton CA (2012) Phys Chem Chem Phys (PCCP) 14(35):12230. doi:10.1039/c2cp41193h, URL http://www.ncbi.nlm.nih.gov/pubmed/22864246

    Article  CAS  Google Scholar 

  20. Aci S, Mazier S, Genest D (2005) J Mol Biol 351(3):520

    Article  CAS  Google Scholar 

  21. Compoint M, Picaud F, Ramseyer C, Girardet C (2005) J Chem Phys 122(13):134707

    Article  Google Scholar 

  22. Ferrara P, Apostolakis J, Caflisch A (2000) Proteins 39(3):252

    Article  CAS  Google Scholar 

  23. Kamerlin SC, Rucker R, Boresch S (2006) Biochem Biophys Res Commun 345(3):1161

    Article  CAS  Google Scholar 

  24. Rodriguez-Barrios F, Gago F (2004) J Am Chem Soc 126(47):15386

    Article  CAS  Google Scholar 

  25. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8

  26. Schlitter J, Engels M, Kruger P (1994) J Mol Graph 12(2):84

    Article  CAS  Google Scholar 

  27. van der Vaart A, Karplus M (2005) J Chem Phys 122(11):114903

    Article  Google Scholar 

  28. Shields GC, Laughton CA, Orozco M (1997) J Am Chem Soc 119(32):7463. doi:10.1021/ja970601z, URL http://pubs.acs.org/doi/abs/10.1021/ja970601z

    Article  CAS  Google Scholar 

  29. Darden T, York D, Pedersen L (1993) J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  30. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81(8):3684

    Article  CAS  Google Scholar 

  31. Yu J, Ha T, Schulten K (2006) Biophys J 91:2097

    Article  CAS  Google Scholar 

  32. Yu J, Ha T, Schulten K (2007) Biophys J 93:3783

Download references

Acknowledgments

This work was supported by the University of Nottingham; National Natural Science Foundation of China [81260481]; Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [2013-693]; Chunhui Program, Ministry of Education of the People’s Republic of China [Z2011050]; Scientific Research Project for Ningxia Colleges and Universities, Department of Education of Ningxia [2011JY004] and University of Malaya-MOHE High Impact Research grant (UM.C/625/1/HIR/MOHE/DENT/22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Cui, J., Hong, W. et al. The study of interactions between DNA and PcrA DNA helicase by using targeted molecular dynamic simulations. J Mol Model 19, 4997–5006 (2013). https://doi.org/10.1007/s00894-013-2008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2008-4

Keywords

Navigation