Skip to main content

Advertisement

Log in

A knowledge-based halogen bonding scoring function for predicting protein-ligand interactions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Halogen bonding, a non-covalent interaction between the halogen σ-hole and Lewis bases, could not be properly characterized by majority of current scoring functions. In this study, a knowledge-based halogen bonding scoring function, termed XBPMF, was developed by an iterative method for predicting protein-ligand interactions. Three sets of pairwise potentials were derived from two training sets of protein-ligand complexes from the Protein Data Bank. It was found that two-dimensional pairwise potentials could characterize appropriately the distance and angle profiles of halogen bonding, which is superior to one-dimensional pairwise potentials. With comparison to six widely used scoring functions, XBPMF was evaluated to have moderate power for predicting protein-ligand interactions in terms of “docking power”, “ranking power” and “scoring power”. Especially, it has a rather satisfactory performance for the systems with typical halogen bonds. To the best of our knowledge, XBPMF is the first halogen bonding scoring function that is not dependent on any dummy atom, and is practical for high-throughput virtual screening. Therefore, this scoring function should be useful for the study and application of halogen bonding interactions like molecular docking and lead optimization.

Heat map of 2D XB potentials for OA-Cl

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794

    Article  CAS  Google Scholar 

  2. Voth AR, Khuu P, Oishi K, Ho PS (2009) Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nat Chem 1:74–79

    Article  CAS  Google Scholar 

  3. Voth AR, Hays FA, Ho PS (2007) Directing macromolecular conformation through halogen bonds. Proc Natl Acad Sci U S A 104:6188–6193

    Article  CAS  Google Scholar 

  4. Bertani R, Sgarbossa P, Venzo A, Lelj F, Amati M et al (2010) Halogen bonding in metal-organic-supramolecular networks. Coord Chem Rev 254:677–695

    Article  CAS  Google Scholar 

  5. Cavallo G, Metrangolo P, Pilati T, Resnati G, Sansotera M et al (2010) Halogen bonding: a general route in anion recognition and coordination. Chem Soc Rev 39:3772–3783

    Article  CAS  Google Scholar 

  6. Li HY, Lu YX, Liu YT, Zhu X, Liu HL et al (2012) Interplay between halogen bonds and pi-pi stacking interactions: CSD search and theoretical study. Phys Chem Chem Phys 14:9948–9955

    Article  CAS  Google Scholar 

  7. Li HY, Lu YX, Wu WH, Liu YT, Peng CJ et al (2013) Noncovalent interactions in halogenated ionic liquids: theoretical study and crystallographic implications. Phys Chem Chem Phys 15:4405–4414

    Article  CAS  Google Scholar 

  8. Lu Y, Liu Y, Xu Z, Li H, Liu H et al (2012) Halogen bonding for rational drug design and new drug discovery. Expert Opin Drug Discov 7:375–383

    Article  CAS  Google Scholar 

  9. Lu YX, Liu YT, Li HY, Zhu X, Liu HL et al (2012) Energetic effects between halogen bonds and anion-pi or lone pair-pi interactions: a theoretical study. J Phys Chem A 116:2591–2597

    Article  CAS  Google Scholar 

  10. Lu YX, Liu YT, Li HY, Zhu X, Liu HL et al (2012) Mutual influence between halogen bonds and cation-p interactions: a theoretical study. Chemphyschem 13:2154–2161

    Article  CAS  Google Scholar 

  11. Lu YX, Shi T, Wang Y, Yang HY, Yan XH et al (2009) Halogen bonding-a novel interaction for rational drug design? J Med Chem 52:2854–2862

    Article  CAS  Google Scholar 

  12. Lu YX, Wang Y, Zhu WL (2010) Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys Chem Chem Phys 12:4543–4551

    Article  CAS  Google Scholar 

  13. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  14. Metrangolo P, Resnati G (2008) Chemistry. Halogen versus hydrogen. Science 321:918–919

    Article  CAS  Google Scholar 

  15. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon-protein complexes: a structural survey. Chem Soc Rev 40:2267–2278

    Article  CAS  Google Scholar 

  16. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  17. Xu Z, Liu Z, Chen T, Wang Z, Tian G et al (2011) Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors. J Med Chem 54:5607–5611

    Article  CAS  Google Scholar 

  18. Murray JS, Riley KE, Politzer P, Clark T (2010) Directional weak intermolecular interactions: sigma-hole bonding. Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  19. Murray JS, Lane P, Politzer P (2009) Expansion of the sigma-hole concept. J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  20. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  21. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  22. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  23. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084

    Article  CAS  Google Scholar 

  24. Merino A, Bronowska AK, Jackson DB, Cahill DJ (2010) Drug profiling: knowing where it hits. Drug Discov Today 15:749–756

    Article  Google Scholar 

  25. Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101:16489–16494

    Article  CAS  Google Scholar 

  26. Hernandes MZ, Cavalcanti SM, Moreira DR, de Azevedo Junior WF, Leite AC (2010) Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr Drug Targets 11:303–314

    Article  CAS  Google Scholar 

  27. Dobes P, Rezac J, Fanfrlik J, Otyepka M, Hobza P (2011) Semiempirical quantum mechanical method PM6-DH2X describes the geometry and energetics of CK2-inhibitor complexes involving halogen bonds well, while the empirical potential fails. J Phys Chem B 115:8581–8589

    Article  CAS  Google Scholar 

  28. Ibrahim MA (2012) AMBER empirical potential describes the geometry and energy of noncovalent halogen interactions better than advanced semiempirical quantum mechanical method PM6-DH2X. J Phys Chem B 116:3659–3669

    Article  CAS  Google Scholar 

  29. Ibrahim MAA (2012) Molecular mechanical perspective on halogen bonding. J Mol Model 18:4625–4638

    Article  CAS  Google Scholar 

  30. Ibrahim MAA (2011) Molecular mechanical study of halogen bonding in drug discovery. J Comput Chem 32:2564–2574

    Article  CAS  Google Scholar 

  31. Kolar M, Hobza P (2012) On extension of the current biomolecular empirical force field for the description of halogen bonds. J Chem Theory Comput 8:1325–1333

    Article  CAS  Google Scholar 

  32. Ibrahim MAA (2011) Performance assessment of semiempirical molecular orbital methods in describing halogen bonding: quantum mechanical and quantum mechanical/molecular mechanical-molecular dynamics study. J Chem Inf Model 51:2549–2559

    Article  CAS  Google Scholar 

  33. Jorgensen WL, Schyman P (2012) Treatment of halogen bonding in the OPLS-AA force field: application to potent anti-HIV agents. J Chem Theory Comput 8:3895–3901

    Article  CAS  Google Scholar 

  34. Kolar M, Hobza P, Bronowska AK (2013) Plugging the explicit sigma-holes in molecular docking. Chem Commun 49:981–983

    Article  CAS  Google Scholar 

  35. Carter M, Rappe AK, Ho PS (2012) Scalable anisotroplic shape and electrostatic models for biological bromine halogen bonds. J Chem Theory Comput 8:2461–2473

    Article  CAS  Google Scholar 

  36. Lee MC, Duan Y (2004) Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins 55:620–634

    Article  CAS  Google Scholar 

  37. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  Google Scholar 

  38. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  39. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  40. Jain AN (1996) Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des 10:427–440

    Article  CAS  Google Scholar 

  41. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  Google Scholar 

  42. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  43. Wang RX, Lai LH, Wang SM (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16:11–26

    Article  CAS  Google Scholar 

  44. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  Google Scholar 

  45. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425–445

    Article  CAS  Google Scholar 

  46. Bohm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243–256

    Article  CAS  Google Scholar 

  47. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S et al (2000) Deciphering common failures in molecular docking of ligand-protein complexes. J Comput Aided Mol Des 14:731–751

    Article  CAS  Google Scholar 

  48. Velec HF, Gohlke H, Klebe G (2005) DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48:6296–6303

    Article  CAS  Google Scholar 

  49. Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42:791–804

    Article  CAS  Google Scholar 

  50. Huang SY, Zou X (2006) An iterative knowledge-based scoring function to predict protein-ligand interactions: I. Derivation of interaction potentials. J Comput Chem 27:1866–1875

    Article  CAS  Google Scholar 

  51. Huang SY, Zou X (2006) An iterative knowledge-based scoring function to predict protein-ligand interactions: II. Validation of the scoring function. J Comput Chem 27:1876–1882

    Article  CAS  Google Scholar 

  52. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295:337–356

    Article  CAS  Google Scholar 

  53. Gohlke H, Hendlich M, Klebe G (2000) Predicting binding modes, binding affinities and 'hot spots' for protein-ligand complexes using a knowledge-based scoring function. Perspect Drug Discov 20:115–144

    Article  CAS  Google Scholar 

  54. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. Proceedings of "Modeling interactions in biomolecules II", Prague, September 5th-9th, 2005. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  55. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other sigma-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  56. Rendine S, Pieraccini S, Forni A, Sironi M (2011) Halogen bonding in ligand-receptor systems in the framework of classical force fields. Phys Chem Chem Phys 13:19508–19516

    Article  CAS  Google Scholar 

  57. Zheng M, Xiong B, Luo C, Li S, Liu X et al (2011) Knowledge-based scoring functions in drug design: 3. A two-dimensional knowledge-based hydrogen-bonding potential for the prediction of protein-ligand interactions. J Chem Inf Model 51:2994–3004

    Article  CAS  Google Scholar 

  58. Thomas PD, Dill KA (1996) Statistical potentials extracted from protein structures: how accurate are they? J Mol Biol 257:457–469

    Article  CAS  Google Scholar 

  59. Thomas PD, Dill KA (1996) An iterative method for extracting energy-like quantities from protein structures. Proc Natl Acad Sci U S A 93:11628–11633

    Article  CAS  Google Scholar 

  60. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  61. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T et al (2011) Open babel: an open chemical toolbox. J Cheminform 3:33

    Article  Google Scholar 

  62. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  63. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C et al (1984) A new force-field for molecular mechanical simulation of nucleic-acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  64. Wang RX, Fang XL, Lu YP, Wang SM (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47:2977–2980

    Article  CAS  Google Scholar 

  65. Wang RX, Fang XL, Lu YP, Yang CY, Wang SM (2005) The PDBbind database: methodologies and updates. J Med Chem 48:4111–4119

    Article  CAS  Google Scholar 

  66. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428

    Article  CAS  Google Scholar 

  67. Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC et al (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. Rna 15:1219–1230

    Article  CAS  Google Scholar 

  68. Cheng TJ, Li X, Li Y, Liu ZH, Wang RX (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49:1079–1093

    Article  CAS  Google Scholar 

  69. Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M (2005) LigScore: a novel scoring function for predicting binding affinities. J Mol Graph Model 23:395–407

    Article  CAS  Google Scholar 

  70. Muegge IA (2006) PMF scoring revisited. J Med Chem 49:5895–5902

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81273435, 21021063 and 91013008) and the State Key Laboratory of Drug Research (SIMM1203KF-01). Computational resources were supported by Computer Network Information Center (CNIC), Chinese Academy of Science (CAS) and Shanghai Supercomputing Center (SCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiliang Zhu.

Electronic supplementary material

Supporting information Table S1 lists the ligand atom types. Table S2 lists the protein atom types. Table S3 depicts the intercorrelations between any two scoring functions with correlation coefficient cutoff >=80 % on eight clusters with respect to ranking power. Figure S1 is the heat maps of 2D XB potentials for four selected donor-acceptor pairs based on TrainingSet-1. Figure S2 is the 1D pairwise potentials for five selected atom type pairs based on TrainingSet-2. Figure S3 is the heat maps of 2D HB potentials for five selected donor-acceptor pairs based on TrainingSet-1. Figure S4 depicts the intercorrelation coefficients of selected scoring functions based on optimized protein-ligand complexes of eight clusters. This material is available free of charge via the Internet at http://pubs.acs.org.

ESM 1

(PDF 4883 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Xu, Z., Yang, Z. et al. A knowledge-based halogen bonding scoring function for predicting protein-ligand interactions. J Mol Model 19, 5015–5030 (2013). https://doi.org/10.1007/s00894-013-2005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2005-7

Keywords

Navigation