Skip to main content
Log in

Armchair BN nanotubes—levothyroxine interactions: a molecular study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The density functional theory has been applied to investigate the structural and electronic properties of single-wall boron nitride nanotubes (SW-BNNT) of (5,5) chirality, with surface and ends functionalized by the drug levothyroxine (C15H11NI4O4). The exchange-correlation energies have been modeled according to the Hamprecht-Cohen-Tozer-Handy functional within the generalized gradient approximation (HCTH-GGA) and a base function with double polarization has been used. The (5,5) BNNT-Levothyroxine structural optimization has been done considering the minimum energy criterion in nine possible atomic structures. Simulation results indicate that the preferential adsorption site (chemical adsorption) of the levothyroxine fragment is at the nanotube ends. The BNNT-Levothyroxine system polarity increases which indicates the possible dispersion and solubility both non-solvated and solvated in water. The BNNT-Levothyroxine solvated in water modifies its chemical reactivity which may allow the drug delivery within the biological systems. On the other hand, the decrease in the work function is important for the optoelectronic device design, which also makes these materials suitable to improve the field emission properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rubio A, Corkill JL, Cohen M (1994) Phys Rev B 49:5081–5084

    Article  CAS  Google Scholar 

  2. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zetl A (1995) Science 269:966–967

    Article  CAS  Google Scholar 

  3. Huei Lee C, Zhang D, Khin Yap Y (2012) J Phys Chem C 116:1798–1804

    Article  Google Scholar 

  4. Raffa V, Riggio C, Smith MW, Jordan KC, Cao W, Cuschieri A (2012) Technol Cancer Res Treat 11:459–527

    CAS  Google Scholar 

  5. Wu J, Yin L (2011) ACS Appl Mater Interfaces 3:4354–4362

    Article  CAS  Google Scholar 

  6. Gao Z, Zhi C, Bando Y, Golberg D, Serizawa T (2011) ACS Appl Mater Interfaces 3:627–632

    Article  CAS  Google Scholar 

  7. Zhi CY, Bando Y, Tang CC, Honda S, Sato K, Kuwahara H, Golberg D (2005) Angew Chem Int Ed 44:7929–7932

    Article  CAS  Google Scholar 

  8. Xie SY, Wang W, Fernando KAS, Wang X, Lin Y, Sun YP (2005) Chem Commun 29:3670–3672

    Article  Google Scholar 

  9. Rodríguez Juárez A, Chigo Anota E, Hernández Cocoletzi H, Flores Riveros A (2013) Appl Surf Sci 268(1):259–264

    Article  Google Scholar 

  10. Singla P, Singhal S, Goel N (2013) Appl Surf Sci 283:881–887

    Article  CAS  Google Scholar 

  11. Chigo Anota E, Hernández Rodríguez LD, Cocoletzi Hernández G (2013) Graphene (in press)

  12. Chigo Anota E, Rodríguez Juárez A, Castro M, Hernández Cocoletzi H (2013) J Mol Model 19(1):321–328

    Article  Google Scholar 

  13. Zhao JX, Ding YH (2009) Nanotechnology 20:085704(1)–085704(6)

    Google Scholar 

  14. Svensson J, Ericsson UB, Nilsson P, Olsson C, Jonsson B, Lindberg B, Ivarsson SA (2006) J Clin Endocrinol Metab 91(5):1729–1734

    Article  CAS  Google Scholar 

  15. Harington CR (1926) Biochem J 20:300–313

    CAS  Google Scholar 

  16. Vaidya B, Pearce SH (2008) BMJ 337:a801

    Article  Google Scholar 

  17. Chigo Anota E, Cocoletzi Hernández G (2013) Physica E. doi:10.1016/j.physe.2013.08.033

  18. Saikia N, Pati SK, Deka RC (2012) Appl Nanosci 2:389–400

    Article  CAS  Google Scholar 

  19. Farmanzadeh D, Ghazanfary S (2013) Struct Chem. doi:10.1007/s11224-013-0292-3

    Google Scholar 

  20. Jae Cho Y, Hyun Kim C, Sung Kim H, Park J, Chul Choi H, Joon Shin H, Gao G, Seok Kang H (2009) Chem Mater 21:136–143

    Article  Google Scholar 

  21. Chigo Anota E, Hernández Cocoletzi G (2013) J Mol Model 19:2335–2341

    Article  CAS  Google Scholar 

  22. Chigo Anota E, Hernández Cocoletzi G (2013) J Mol Graph Model 42:115–119

    Article  CAS  Google Scholar 

  23. Baumeier B, Krüger P, Pollmann J (2007) Phys Rev B 76:085407(1)–085407(10)

    Google Scholar 

  24. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2011) J Nanosci Nanotechnol 11(6):5515–5518

    Article  CAS  Google Scholar 

  25. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2010) Phys Status Solidi C 7(7–8):2252–2254

    Article  Google Scholar 

  26. Chigo Anota E, Salazar Villanueva M, Hernández Cocoletzi H (2010) Phys Status Solidi C 7(10):2559–2561

    Article  Google Scholar 

  27. Chigo Anota E, Hernández Cocoletzi H, Rubio Rosas E (2011) Eur Phys J D 63:271–273

    Article  CAS  Google Scholar 

  28. Chigo Anota E, Ramírez Gutierrez RE, Escobedo Morales A, Hernández Cocoletzi G (2012) J Mol Model 18(5):2175–2184

    Article  Google Scholar 

  29. Galícia Hernández JM, Hernández Cocoletzi G, Chigo Anota E (2012) J Mol Model 18(1):137–144

    Article  Google Scholar 

  30. Boese AD, Handy NC (2001) J Chem Phys 114:5497–5503

    Article  CAS  Google Scholar 

  31. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  32. Delley B (2000) J Chem Phys 113:7756–7765

    Article  CAS  Google Scholar 

  33. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  34. Delley B (2006) Mol Simul 32:117–123

    Article  CAS  Google Scholar 

  35. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  36. Chigo Anota E, Ramírez Gutiérrez RE, Pérez Sánchez FL, Sánchez Ramírez JF (2013) Graphene 1(1):31–36

    Article  Google Scholar 

  37. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, USA, p 70

    Google Scholar 

  38. Xiang HJ, Yang J, Hou JG, Zhu Q (2003) Phys Rev B 68:035427(1)–035427(5)

    Article  Google Scholar 

  39. Golberg D, Bando Y (2001) Appl Phys Lett 79:415–417

    Article  CAS  Google Scholar 

  40. Li S (2006) Semiconductor physical electronics, 2nd edn. Springer, USA

    Book  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by projects: VIEP-BUAP (CHAE-ING13-G), Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177), Cuerpo Académico Física Computacional de la Materia Condensada (BUAP-CA-191) and Vicerrectoría de Investigación y Estudios de Posgrado-Benemérita Universidad Autónoma de Puebla (VIEP-BUAP), grant 31/EXC/06-G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Chigo Anota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anota, E.C., Cocoletzi, G.H. & Ramírez, J.F.S. Armchair BN nanotubes—levothyroxine interactions: a molecular study. J Mol Model 19, 4991–4996 (2013). https://doi.org/10.1007/s00894-013-1999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1999-1

Keywords

Navigation