Skip to main content
Log in

Destabilization of the MutSα’s protein-protein interface due to binding to the DNA adduct induced by anticancer agent carboplatin via molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kunkel TA (1992) DNA replication fidelity. J Biol Chem 267:18251–18254

    CAS  Google Scholar 

  2. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323

    Article  CAS  Google Scholar 

  3. Peltomaki P (2003) Role of DNA mismatch repair deffects in the pathogenesis of human cancer. J Clin Oncol 21:1174–1179

    Article  CAS  Google Scholar 

  4. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nature 4:307–321

    Article  CAS  Google Scholar 

  5. Vasilyeva A, Clodfelter JE, Reactor B, Hills T, Scarpinato KD, Salsbury FR Jr (2009) Small molecule induction of Msh2-dependent cell death suggests a vital role of mismatch repair proteins in cell death. DNA Repair 8:103–113

    Article  CAS  Google Scholar 

  6. Salsbury FR Jr, Clodfelter JE, Gentry MB, Hollis T, Scarpinato Drotschman K (2006) The molecular mechanism of DNA damage recognition by MutS homologs and its consequences for cell death response. Nucleic Acids Res 34:2173–2185

    Article  CAS  Google Scholar 

  7. Vasilyeva A, Clodfelter JE, Gorczynski MJ, Gerardi AR, King SB et al. (2010) Parameters of reserpine analogs that induce MSH2/MSH6-dependent cytotoxic response. J Nucleic Acids. doi:10.4061/2010/162018

    Google Scholar 

  8. Fukui K, Shimada A, Iino H, Masui R, Kuramitsu S (2011) Biochemical properties of MutL, a DNA mismatch repair endonuclease. In: Storici F (ed) DNA repair - on the pathways to fixing DNA damage and errors. In Tech. doi:10.5772/23758

  9. Gupta S, Gellert M, Yang W (2012) Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops. Nat Struct Mol Biol 19:72–79

    Article  CAS  Google Scholar 

  10. Qiu R, DeRocco VC, Harris C, Sharma A, Hingorani MM, Erie DA, Weninger KR (2012) Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signaling. EMBO J 31:2528–2540

    Article  CAS  Google Scholar 

  11. Duckett DR, Drummond JT, Alastair IH, Murchie AIH, Reardon JT et al. (1996) Human MutSalpha recognizes damaged DNA base pairs containing 06-methylguanine, 04-methylthymine, or the cisplatin-d(GpG) adduct. Proc Natl Acad Sci U S A 93:6443–6447

    Article  CAS  Google Scholar 

  12. Mello JA, Acharya S, Fishel R, Essigmann JM (1996) The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem Biol 3:579–589

    Article  CAS  Google Scholar 

  13. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    Article  CAS  Google Scholar 

  14. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nature 7:573–584

    CAS  Google Scholar 

  15. Drotschmann K, Topping RP, Clodfelter JE, Salsbury FR Jr (2004) Mutations in the nucleotide-binding domain of MutS homologs uncouple cell death from cell survival. DNA Repair (Amst) 3:729–742

    Article  CAS  Google Scholar 

  16. Harrap KR (1985) Preclinical studies identifying carboplatin as a viable cisplatin alternative. Cancer Treat Rev 12:21–33

    Article  CAS  Google Scholar 

  17. Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699

    Article  CAS  Google Scholar 

  18. Wheate NJ, Walker S, Craig GE, Onun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39:813–827

    Article  Google Scholar 

  19. Andrews P, Howell S (1990) Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer Cells 2:35–43

    CAS  Google Scholar 

  20. Shirazi FH, Wong PTT, Goel R (2003) Interaction of cisplatin with cellular macromolecules: a fourier transform infrared spectroscopy study. Iran J Pharm Res 2:11–15

    CAS  Google Scholar 

  21. Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ (1995) Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377:649–652

    Article  CAS  Google Scholar 

  22. Teuben JM, Bauer C, Wang AHJ, Reedijk J (1999) Solution structure of a DNA duplex containing a cis-diammineplatinum(II) 1,3-d(GTG) intrastrand cross-link, a major adduct in cells treated with the anticancer drug carboplatin. Biochemistry 38:12305–12312

    Article  CAS  Google Scholar 

  23. Wolfe KC, Hastings WA, Dutta S, Long A, Shapiro BA et al. (2012) Multiscale modeling of double-helical DNA and RNA: a unification through lie groups. J Phys Chem B. doi:10.1021/jp2126015

    Google Scholar 

  24. Kartalou M, Essigmann JM (2001) Recognition of cisplatin adducts by cellular proteins. Mutat Res 478:1–21

    Article  CAS  Google Scholar 

  25. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498

    Article  CAS  Google Scholar 

  26. Negureanu L, Salsbury FR Jr (2012) Insights into protein-DNA interactions, stability and allosteric communications: a computational study of MutSα-DNA recognition complexes. J Biomol Struct Dyn 29:757–776

    Article  CAS  Google Scholar 

  27. Negureanu L, Salsbury FR Jr (2012) The molecular origin of the MMR-dependent apoptosis pathway from dynamics analysis of MutSα-DNA complexes. J Biomol Struct Dyn 30:347–361

    Article  CAS  Google Scholar 

  28. Warren JJ, Pohlhaus TJ, Changele A, Iyer RR, Modrich PL et al. (2007) Structure of the human MutS DNA lesion recognition complex. Mol Cell 26:579–592

    Article  CAS  Google Scholar 

  29. Brooks B, Bruccoleri RE, Olafson BD, States DJ, Swaminatan S et al. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  30. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulated liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  32. MacKerell DA Jr, Banavali N, Foloppe N (2001) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56(257–265)

    Google Scholar 

  33. MacKerell DA Jr, Bashford D, Bellot M, Dunbrack RL, Evanseck JD et al. (1998) All-atom empirical potential for molecular modeling and studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  34. Scheeff ED, Briggs JM, Hawell SB (1999) Molecular modeling of the intrastrand guanine-guanine DNA adducts produced by cisplatin and oxaliplatin. Mol Pharmacol 56(633–643)

    Google Scholar 

  35. Salsbury FR Jr, Crowley MF, Brooks CL (2001) Modeling of the metallo-beta-lactamase from B-fragilis: structural and dynamic effects of inhibitor binding. Proteins 44:448–459

    Article  CAS  Google Scholar 

  36. Knaggs MH, Salsbury Jr FR, Edgell MH, Fetrow JS (2007) Insights into correlated motions and long-range interactions in CheY derived from molecular dynamics simulations. Biophys J:2062–2079

    Google Scholar 

  37. Salsbury FR Jr (2010) Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr Opin Pharmacol 10:738–744

    Article  CAS  Google Scholar 

  38. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  39. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A et al. (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 15:1283–1312

    Google Scholar 

  40. van Gunsteren WF, Berendsen HJC (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34(1311–1327)

    Google Scholar 

  41. Darden T, York D, Pedersen L (1993) Particle Mesh Ewald: an N Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  42. Hunenberger P, Mark AE, van Gunsteren WF (1995) Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. J Mol Biol 252:492–503

    Article  CAS  Google Scholar 

  43. Caves LSD, Evanseck JD, Karplus M (1998) Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci 7:649–666

    Article  CAS  Google Scholar 

  44. Straub JE, Rashkin AB, Thirumalai D (1994) Dynamics in rugged energy landscapes with applications to the S-peptide and ribonuclease. J Am Chem Soc 116:2049–2063

    Article  CAS  Google Scholar 

  45. Horita DA, Zhang W, Smithgall TE, Gmeiner WH, Byrd RA (2000) Dynamics of the Hck-SH3 domain: comparison of experiment with multiple molecular dynamics simulations. Protein Sci 9:95–103

    Article  CAS  Google Scholar 

  46. Auffinger P, Westhof E (1997) Three ns of multiple molecular dynamics simulations of solvated tRNA(ASP) anticodon hairpin. J Mol Biol 269:326–341

    Article  CAS  Google Scholar 

  47. Salsbury FR Jr, Crowder MW, Kingsmore SF, Huntley JJA (2009) Molecular dynamics simulations of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. J Mol Model 15:133–145

    Article  CAS  Google Scholar 

  48. Loccisano AE, Acevedo O, DeChancie J, Schulze BG, Evanseck JD (2004) Enhanced sampling by multiple molecular dynamics trajectories: carbonmonoxy myoglobin 10 micros A0–>A(1–3 transition from ten 400 picosecond simulations. J Mol Model 22:369–376

    Article  CAS  Google Scholar 

  49. Steinbach P, Brooks BR (1994) New spherical-cutoff methods for long-range forces in macromolecular simulations. J Comp Chem 15:667–683

    Article  CAS  Google Scholar 

  50. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400

    Article  CAS  Google Scholar 

  51. Chothia C (1976) The nature of the accessible and buried surfaces in proteins. J Mol Biol 105:1–14

    Article  CAS  Google Scholar 

  52. Raschke TM, Tsai J, Levitt M (2001) Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water. Proc Natl Acad Sci U S A 98:5965–5969

    Article  CAS  Google Scholar 

  53. Taylor A, Kennard O (1982) Crystallographic evidence for the existence of C–H–O, C–H–N and C–H Cl hydrogen bonds. J Am Chem Soc 104(5063–5070)

    Google Scholar 

  54. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  55. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer Verlag, Berlin

    Book  Google Scholar 

  56. Panigrahi SK, Desiraju GR (2007) Strong and weak hydrogen bonds in the protein-ligand interface. Proteins 67:128–142

    Article  CAS  Google Scholar 

  57. Barlow D, Thornton JM (1983) Ion-pairs in proteins. J Mol Biol 168:867–885

    Article  CAS  Google Scholar 

  58. Karpen M, Tobias DJ, Brooks CL (1993) Statistical clustering techniques for the analysis of long molecular dynamics trajectories: analysis of 2.2-ns trajectories of YPGDV. Biochemistry 32:412–420

    Article  CAS  Google Scholar 

  59. Matlab (2010) 7.10.0 edn. The MathWorks Inc., Natick, MA

  60. Negureanu L, Salsbury FR Jr (2013) Non-specificity and synergy at the binding site of the carboplatin-induced DNA adduct via molecular dynamics simulations of the MutSα-DNA recognition complex. J Biomol Struct Dyn. doi:10.1080/07391102.2013.799437

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by National Institute of Health R01CA129373 grand to FRS. The computational herein were performed on the Wake Forest University DEAC cluster. We thank Wake Forest University’s Provost’s office and Information Systems Department for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie R. Salsbury Jr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 763 kb)

ESM 2

(DOC 35 kb)

ESM 3

(PDF 266 kb)

ESM 4

(PDF 1812 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negureanu, L., Salsbury, F.R. Destabilization of the MutSα’s protein-protein interface due to binding to the DNA adduct induced by anticancer agent carboplatin via molecular dynamics simulations. J Mol Model 19, 4969–4989 (2013). https://doi.org/10.1007/s00894-013-1998-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1998-2

Keywords

Navigation