Skip to main content
Log in

Molecular dynamics simulation of cross-linked urea-formaldehyde polymers for self-healing nanocomposites: prediction of mechanical properties and glass transition temperature

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Urea-formaldehyde polymers, which are utilized in the adhesives industry, have recently been shown to be suitable materials for synthesizing micro/nanocapsules for use in self-healing (nano)composites. In this study, molecular dynamics was employed to simulate the process in which urea and formaldehyde are cross-linked via methylene and ether cross linkers, and to study the structure and mechanical/thermal properties of simulated poly(urea-formaldehyde)s (PUFs). The elastic stiffness constants of the simulated materials were calculated using the constant-strain (static) method. A temperature cycle was applied to the cross-linked PUFs, and the glass transition behavior of each material was investigated through the mean squared displacement (MSD) and temperature evolution of the energy and the specific volume of the polymer. The simulation results confirmed that there was considerable improvement in the properties of the poly(UF) materials upon cross linking. The radial distribution function was also used to study the local structures of the polymers, and this revealed that increasing the temperature and cross linking density results in a significant drop in hydrogen bonding intensity in the cross-linked PUF systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–b
Fig. 5a–b
Fig. 6a–b
Fig. 7a–b
Fig. 8a–b
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. White SR, Sottos N, Geubelle P, Moore J, Kessler MR, Sriram S, Brown E, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797

    Article  CAS  Google Scholar 

  2. Blaiszik B, Sottos N, White S (2008) Nanocapsules for self-healing materials. Compos Sci Technol 68(3):978–986

    Article  CAS  Google Scholar 

  3. Cho SH, White SR, Braun PV (2008) Self–healing polymer coatings. Adv Mater 21(6):645–649

    Article  Google Scholar 

  4. Kirkby E, Michaud V, Månson JAE, Sottos N, White S (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50(23):5533–5538

    Article  CAS  Google Scholar 

  5. Rule JD, Sottos NR, White SR (2007) Effect of microcapsule size on the performance of self-healing polymers. Polymer 48(12):3520–3529

    Article  CAS  Google Scholar 

  6. Suryanarayana C, Rao KC, Kumar D (2008) Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog Org Coat 63(1):72–78

    Article  CAS  Google Scholar 

  7. Yuan YC, Rong MZ, Zhang MQ, Yang GC (2009) Study of factors related to performance improvement of self-healing epoxy based on dual encapsulated healant. Polymer 50(24):5771–5781

    Article  CAS  Google Scholar 

  8. Nesterova T, Dam-Johansen K, Kiil S (2011) Synthesis of durable microcapsules for self-healing anticorrosive coatings: a comparison of selected methods. Prog Org Coat 70(4):342–352

    Article  CAS  Google Scholar 

  9. Yin T, Rong MZ, Zhang MQ, Yang GC (2007) Self-healing epoxy composites—preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos Sci Technol 67(2):201–212

    Google Scholar 

  10. Conner AH (2001) Wood: adhesives. In: Encyclopedia of materials: science and technology. Elsevier, New York

  11. Pizzi A, Mittal KL (2003) Handbook of adhesive technology, revised and expanded edn. CRC, Boca Raton

  12. Accelrys Inc. (2013) Materials Studio. Accelrys Inc., San Diego. http://accelrys.com/products/materials-studio

  13. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  14. Sandia National Laboratories (2013) LAMMPS molecular dynamics simulator. Sandia National Laboratories, Albuquerque. http://lammps.sandia.gov

  15. Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116(7):2978–2987

    Article  CAS  Google Scholar 

  16. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 369(3):253–287

    Article  Google Scholar 

  17. Shokuhfar A, Arab B (2013) The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model 19(9):3719–3731

    Article  CAS  Google Scholar 

  18. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  19. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268

    Article  Google Scholar 

  20. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  Google Scholar 

  21. Theodorou DN, Suter UW (1986) Atomistic modeling of mechanical properties of polymeric glasses. Macromol 19(1):139–154

    Article  CAS  Google Scholar 

  22. Choi J, Yu S, Yang S, Cho M (2011) The glass transition and thermoelastic behavior of epoxy-based nanocomposites: a molecular dynamics study. Polymer 52(22):5197–5203

    Article  CAS  Google Scholar 

  23. Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data, vol 1. Springer, Berlin

    Book  Google Scholar 

  24. Park B-D, Frihart CR, Yu Y, Singh AP (2013) Hardness evaluation of cured urea-formaldehyde resins with different formaldehyde/urea mole ratios using nanoindentation method. Eur Polym J 49:3089–3094. doi:10.1016/j.eurpolymj.2013.06.013

    Google Scholar 

  25. Yang S, Qu J (2012) Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations. Polymer 53(21):4806–4817

    Article  CAS  Google Scholar 

  26. Wu C, Xu W (2007) Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin. Polymer 48(19):5802–5812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Antonio Pizzi (University of Lorraine, France) for helpful discussions. The High Performance Computing (HPC) Laboratory, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran is also acknowledged for providing computational facilities for our simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Arab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arab, B., Shokuhfar, A. Molecular dynamics simulation of cross-linked urea-formaldehyde polymers for self-healing nanocomposites: prediction of mechanical properties and glass transition temperature. J Mol Model 19, 5053–5062 (2013). https://doi.org/10.1007/s00894-013-1996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1996-4

Keywords

Navigation