Skip to main content
Log in

Conformational flexibility of the leucine binding protein examined by protein domain coarse-grained molecular dynamics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Periplasmic binding proteins are the initial receptors for the transport of various substrates over the inner membrane of gram-negative bacteria. The binding proteins are composed of two domains, and the substrate is entrapped between these domains. For several of the binding proteins it has been established that a closed-up conformation exists even without substrate present, suggesting a highly flexible apo-structure which would compete with the ligand-bound protein for the transporter interaction. For the leucine binding protein (LBP), structures of both open and closed conformations are known, but no closed-up structure without substrate has been reported. Here we present molecular dynamics simulations exploring the conformational flexibility of LBP. Coarse grained models based on the MARTINI force field are used to access the microsecond timescale. We show that a standard MARTINI model cannot maintain the structural stability of the protein whereas the ELNEDIN extension to MARTINI enables simulations showing a stable protein structure and nanosecond dynamics comparable to atomistic simulations, but does not allow the simulation of conformational flexibility. A modification to the MARTINI-ELNEDIN setup, referred to as domELNEDIN, is therefore presented. The domELNEDIN setup allows the protein domains to move independently and thus allows for the simulation of conformational changes. Microsecond domELNEDIN simulations starting from either the open or the closed conformations consistently show that also for LBP, the apo-structure is flexible and can exist in a closed form.

Closed and open conformations of the Leucine Binding Protein. Thin gray lines show the elastic network maintaining tertiary structure in coarse grained (CG) simulations. Red lines show elastic network bonds present in the ELNEDIN CG model, but removed in the domELNEDIN CG model, to allow for free protein domain motion

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Quiocho FA, Ledvina P (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: Variation of common themes. Mol Microbiol 20:17–25

    Article  CAS  Google Scholar 

  2. Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: A versatile superfamily for protein engineering. Curr Opin Struct Biol 14:495–504

    Article  CAS  Google Scholar 

  3. Gerstein M, Lesk AM, Chothia C (1994) Structural mechanisms for domain movements in proteins. Biochemistry (N Y) 33:6739–6749

    Article  CAS  Google Scholar 

  4. Sack JS, Saper M, Quiocho FA (1989) Structure of the L-leucine-binding protein refined at 2.4 Å resolution and comparison with the Leu/Ile/Val-binding protein structure. J Mol Biol 206:171–191

    Article  CAS  Google Scholar 

  5. Sack JS, Trakhanov SD, Tsigannik IH, Quiocho FA (1989) Periplasmic binding-protein structure and function—Refined x-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J Mol Biol 206:193–207

    Article  CAS  Google Scholar 

  6. Magnusson U, Salopek-Sondi B, Luck LA, Mowbray SL (2004) X-ray structures of the leucine-binding protein illustrate conformational changes and the basis of ligand specificity. J Biol Chem 279:8747–8752

    Article  CAS  Google Scholar 

  7. Quiocho FA (1991) Atomic structures and function of periplasmic receptors for active transport and chemotaxis. Curr Opin Struct Biol 1:922–933

    Article  CAS  Google Scholar 

  8. George AM, Jones PM (2012) Perspectives on the structure-function of ABC transporters: The switch and constant contact models. Prog Biophys Mol Biol 109:95–107

    Article  CAS  Google Scholar 

  9. Moussatova A, Kandt C, O’Mara ML, Tieleman DP (2008) ATP-binding cassette transporters in escherichia coli. Biochim Biophys Acta, Biomembr 1778:1757–1771

    Article  CAS  Google Scholar 

  10. Oldham ML, Davidson AL, Chen J (2008) Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18:726–733

    Article  CAS  Google Scholar 

  11. Quiocho FA (1990) Atomic structures of periplasmic binding-proteins and the high-affinity active-transport systems in bacteria. Philos Trans R Soc, B 326:341–352

    Article  CAS  Google Scholar 

  12. Pang A, Arinaminpathy Y, Sansom MS, Biggin PC (2005) Comparative molecular dynamics—similar folds and similar motions? Proteins: Struct, Funct, Bioinf 61:809–822

    Article  CAS  Google Scholar 

  13. Stockner T, Vogel HJ, Tieleman DP (2005) A salt-bridge motif involved in ligand binding and large-scale domain motions of the maltose-binding protein. Biophys J 89:3362–3371

    Article  CAS  Google Scholar 

  14. Krewulak KD, Shepherd CM, Vogel HJ (2005) Molecular dynamics simulations of the Periplasmic Ferric-Hydroxamate binding protein FhuD. Biometals 18:375–386

    Article  CAS  Google Scholar 

  15. Kandt C, Xu Z, Tieleman DP (2006) Opening and closing motions in the Periplasmic vitamin B-12 binding protein BtuF. Biochemistry (N Y) 45:13284–13292

    Article  CAS  Google Scholar 

  16. Liu M, Su JG, Kong R, Sun TG, Tan JJ, Chen WZ, Wang CX (2008) Molecular dynamics simulations of the bacterial Periplasmic heme binding proteins ShuT and PhuT. Biophys Chem 138:42–49

    Article  CAS  Google Scholar 

  17. Silva D, Dominguez-Ramirez L, Rojo-Dominguez A, Sosa-Peinado A (2011) Conformational dynamics of L-lysine, L-arginine, L-ornithine binding protein reveals ligand-dependent plasticity. Proteins: Struct, Funct, Bioinf 79:2097–2108

    Article  CAS  Google Scholar 

  18. Loeffler HH, Kitao A (2009) Collective dynamics of periplasmic glutamine binding protein upon domain closure. Biophys J 97:2541–2549

    Article  CAS  Google Scholar 

  19. Trakhanov S, Vyas NK, Luecke H, Kristensen DM, Ma JP, Quiocho FA (2005) Ligand-free and-bound structures of the binding protein (LivJ) of the escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity. Biochemistry (N Y) 44:6597–6608

    Article  CAS  Google Scholar 

  20. Perilla JR, Beckstein O, Denning EJ, Woolf TB (2011) Computing ensembles of transitions from stable states: dynamic importance sampling. J Comput Chem 32:196–209

    Article  CAS  Google Scholar 

  21. Bucher D, Grant BJ, Markwick PR, McCammon JA (2011) Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics. PLoS Comp Biol 7:e1002034

    Article  CAS  Google Scholar 

  22. Ravindranathan KP, Gallicchio E, Levy RM (2005) Conformational equilibria and free energy profiles for the allosteric transition of the ribose-binding protein. J Mol Biol 353:196–210

    Article  CAS  Google Scholar 

  23. Su JG, Jiao X, Sun TG, Li CH, Chen WZ, Wang CX (2007) Analysis of domain movements in glutamine-binding protein with simple models. Biophys J 92:1326–1335

    Article  CAS  Google Scholar 

  24. Hall BA, Kaye SL, Pang A, Perera R, Biggin PC (2007) Characterization of protein conformational states by normal-mode frequencies. J Am Chem Soc 129:11394–11401

    Article  CAS  Google Scholar 

  25. Hub JS, de Groot BL (2009) Detection of functional modes in protein dynamics. PLoS Comp Biol 5:e1000480

    Article  Google Scholar 

  26. Tozzini V (2010) Multiscale modeling of proteins. Acc Chem Res 43:220–230

    Article  CAS  Google Scholar 

  27. Tozzini V, Rocchia W, McCammon JA (2006) Mapping all-atom models onto One-bead coarse-grained models: General properties and applications to a minimal polypeptide model. J Chem Theory Comput 2:667–673

    Article  CAS  Google Scholar 

  28. Yap E, Fawzi NL, Head-Gordon T (2008) A coarse-grained alpha-carbon protein model with anisotropic hydrogen-bonding. Proteins: Struct, Funct, Bioinf 70:626–638

    Article  CAS  Google Scholar 

  29. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  CAS  Google Scholar 

  30. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: Coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  Google Scholar 

  31. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  32. Lopez CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Huenenberger PH, Marrink SJ (2009) Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput 5:3195–3210

    Article  CAS  Google Scholar 

  33. Periole X, Cavalli M, Marrink SJ, Ceruso MA (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5:2531–2543

    Article  CAS  Google Scholar 

  34. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 16:1701–1718

    Article  Google Scholar 

  35. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comp 4:435–447

    Article  CAS  Google Scholar 

  36. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  37. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman PJ (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  38. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In intermolecular forces. Reidel, Dordrecht

  39. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  40. Wang JM, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graphics Modell 25:247–260

    Article  Google Scholar 

  41. Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Proteins 33:417–429

    Article  CAS  Google Scholar 

  42. The pDomains Server. http://pdomains.sdsc.edu/v2/index.php. Accessed 28 June 2013

  43. The DomFOLD Server. http://www.reading.ac.uk/bioinf/DomFOLD/. Accessed 28 June 2013

  44. Amadei A, Ceruso MA, Di Nola A (1999) On the convergence of the conformational coordinates basis set obtained by the essential dynamics analysis of proteins’ molecular dynamics simulations. Proteins: Struct, Funct, Genet 36:419–424

    Article  CAS  Google Scholar 

  45. Ceruso MA, Amadei A, Di Nola A (1999) Mechanics and dynamics of B1 domain of protein G: Role of packing and surface hydrophobic residues. Protein Sci 8:147–160

    Article  CAS  Google Scholar 

  46. Ceruso MA, Grottesi A, Di Nola A (2003) Dynamic effects of mutations within two loops of cytochrome C(551) from pseudomonas Eeruginosa. Proteins: Struct, Funct, Genet 50:222–229

    Article  CAS  Google Scholar 

  47. Sengupta D, Rampioni A, Marrink SJ (2009) Simulations of the C-subunit of ATP-synthase reveal helix rearrangements. Mol Membr Biol 26:422–434

    Article  Google Scholar 

  48. Sengupta D, Marrink SJ (2010) Lipid-mediated interactions tune the association of Glycophorin A helix and its disruptive mutants in membranes. Phys Chem Chem Phys 12:12987–12996

    Article  CAS  Google Scholar 

  49. Louhivuori M, Risselada HJ, van der Giessen E, Marrink SJ (2010) Release of content through mechano-sensitive gates in pressurized liposome. Proc Natl Acad Sci U S A 107:19856–19860

    Article  CAS  Google Scholar 

  50. Yefimov S, Onck PR, van der Giessen E, Marrink SJ (2008) Mechanosensitive membrane channels in action. Biophys J 94:2994–3002

    Article  CAS  Google Scholar 

  51. Ponting CP, Russell RR (2002) The natural history of protein domains. Annu Rev Biophys Biomol Struct 31:45–71

    Article  CAS  Google Scholar 

  52. Richardson JS (1981) The anatomy and taxonomy of protein structure. Adv Protein Chem 34:167–339

    Article  CAS  Google Scholar 

  53. Thogersen L, Schiott B, Vosegaard T, Nielsen NC, Tajkhorshid E (2008) Peptide aggregation and pore formation in a lipid bilayer: A combined coarse-grained and all atom molecular dynamics study. Biophys J 95:4337–4347

    Article  CAS  Google Scholar 

  54. Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T (2012) Structural determinants of the supramolecular organization of g protein-coupled receptors in bilayers. J Am Chem Soc 134:10959–10965

    Article  CAS  Google Scholar 

  55. Jorgensen WL (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  56. Kaminski G (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  57. Oostenbrink C (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  Google Scholar 

  58. de Jong DH, Periole X, Marrink SJ (2012) Dimerization of amino acid side chains: lessons from the comparison of different force fields. J Chem Theory Comput 8:1003–1014

    Article  Google Scholar 

  59. Tang C, Schwieters CD, Clore GM (2007) Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449:1078–1082

    Article  CAS  Google Scholar 

  60. Walmsley AR, Shaw JG, Kelly DJ (1992) The mechanism of ligand-binding to the periplasmic C4-dicarboxylate binding-protein (Dctp) from rhodobacter-capsulatus. J Biol Chem 267:8064–8072

    CAS  Google Scholar 

  61. Flocco MM, Mowbray SL (1994) The 1.9 angstrom X-ray structure of a closed unliganded form of the periplasmic glucose/galactose receptor from salmonella-typhimurium. J Biol Chem 235:709–717

    CAS  Google Scholar 

  62. Wolf A, Shaw EW, Nikaido K, Ames GFL (1994) The histidine-binding protein undergoes conformational-changes in the absence of ligand as analyzed with conformation-specific monoclonal-antibodies. J Biol Chem 269:23051–23058

    CAS  Google Scholar 

  63. Bjorkman AJ, Mowbray SL (1998) Multiple open forms of ribose-binding protein trace the path of its conformational change. J Mol Biol 279:651–664

    Article  CAS  Google Scholar 

  64. Oswald C, Smits SHJ, Höing M, Sohn-Boesser L, Dupont L, Le Rudulier D, Schmitt L, Bremer E (2008) Crystal structures of the choline/acetylcholine substrate-binding protein ChoX from sinorhizobium meliloti in the liganded and unliganded-closed states. J Biol Chem 283:32848–32859

    Article  CAS  Google Scholar 

  65. Holland TA, Veretnik S, Shindyalov IN, Bourne PE (2006) Partitioning protein structures into domains: why is it so difficult? J Mol Biol 361:562–590

    Article  CAS  Google Scholar 

  66. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH—a hierarchic classification of protein domain structures. Structure 5:1093–1108

    Article  CAS  Google Scholar 

  67. Andreeva A, Howorth D, Chandonia J, Brenner SE, Hubbard TJP, Chothia C, Murzin AG (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36:D419–425

    Article  CAS  Google Scholar 

  68. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  69. The Protein Data Bank. http://www.pdb.org/pdb/home/home.do. Accessed 28 June 2013

  70. Veretnik S, Bourne PE, Alexandrov NN, Shindyalov IN (2004) Toward consistent assignment of structural domains in proteins. J Mol Biol 339:647–678

    Article  CAS  Google Scholar 

  71. Hayward S, Berendsen HJC (1998) Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme. Proteins: Struct, Funct, Genet 30:144–154

    Article  CAS  Google Scholar 

  72. Zhang Z, Pfaendtner J, Grafmueller A, Voth GA (2009) Defining coarse-grained representations of large biomolecules and biomolecular complexes from elastic network models. Biophys J 97:2327–2337

    Article  CAS  Google Scholar 

  73. McGuffin LJ (2008) The ModFOLD server for the quality assessment of protein structural models. Bioinformatics 24:586–587

    Article  CAS  Google Scholar 

  74. Jones DT, Bryson K, Coleman A, McGuffin LJ, Sadowski MI, Sodhi JS, Ward JJ (2005) Prediction of novel and analogous folds using fragment assembly and fold recognition. Proteins: Struct, Funct, Bioinf 61(7):143–151

    Article  CAS  Google Scholar 

  75. Alexandrov NN, Shindyalov IN (2003) PDP: Protein domain parser. Bioinformatics 19:429–430

    Article  CAS  Google Scholar 

  76. Alden K, Veretnik S, Bourne PE (2010) dConsensus: a tool for displaying domain assignments by multiple structure-based algorithms and for construction of a consensus assignment. BMC Bioinforma 11:310–317

    Article  Google Scholar 

  77. de Jong DH, Singh G, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ (2013) Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput 9:687–697

    Article  Google Scholar 

  78. Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comp Biol 6:e1000810

    Article  Google Scholar 

  79. Krupka RM (1992) Testing models for transport-systems dependent on periplasmic binding-proteins. Biochim Biophys Acta 1110:11–19

    Article  CAS  Google Scholar 

  80. Hollenstein K, Frei DC, Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446:213–216

    Article  CAS  Google Scholar 

  81. Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E, Locher KP (2007) Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317:1387–1390

    Article  CAS  Google Scholar 

  82. Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:515–521

    Article  CAS  Google Scholar 

  83. Oldham ML, Chen J (2011) Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332:1202–1205

    Article  CAS  Google Scholar 

  84. Bohl E, Shuman HA, Boos W (1995) Mathematical treatment of the kinetics of binding-protein dependent transport-systems reveals that both the substrate loaded and unloaded binding-proteins interact with the membrane-components. J Theor Biol 172:83–94

    Article  CAS  Google Scholar 

  85. Shilton BH, Mowbray SL (1995) Simple-models for the analysis of binding protein-dependent transport-systems. Protein Sci 4:1346–1355

    Article  CAS  Google Scholar 

  86. Ames GFL, Liu CE, Joshi AK, Nikaido K (1996) Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases. J Biol Chem 271:14264–14270

    Article  CAS  Google Scholar 

  87. Prossnitz E, Gee A, Ames GF (1989) Reconstitution of the histidine periplasmic transport-system in membrane-vesicles—energy coupling and interaction between the binding-protein and the membrane complex. J Biol Chem 264:5006–5014

    CAS  Google Scholar 

  88. Borths EL, Poolman B, Hvorup RN, Locher KP, Rees DC (2005) In vitro functional characterization of BtuCD-F, the escherichia coli ABC transporter for vitamin B-12 uptake. Biochemistry (N Y) 44:16301–16309

    Article  CAS  Google Scholar 

  89. Lervik A, Bresme F, Kjelstrup S, Miguel Rubi J (2012) On the thermodynamic efficiency of Ca2 + −ATPase molecular machines. Biophys J 103:1218–1226

    Article  CAS  Google Scholar 

  90. Kawaguchi K (2008) Energetics of kinesin-1 stepping mechanism. FEBS Lett 582:3719–3722

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Danish National Research Foundation for the Pumpkin Centre, the Carlsberg Foundation (LT), and from the Aarhus Graduate School of Science and Technology (IS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Thøgersen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 658 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siuda, I., Thøgersen, L. Conformational flexibility of the leucine binding protein examined by protein domain coarse-grained molecular dynamics. J Mol Model 19, 4931–4945 (2013). https://doi.org/10.1007/s00894-013-1991-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1991-9

Keywords

Navigation