Skip to main content

Advertisement

Log in

Conformational analysis and intramolecular hydrogen bonding of cis-3-aminoindan-1-ol: a quantum chemical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present work, we carried out a conformational analysis of cis-3-aminoindan-1-ol and evaluated the role of the intramolecular hydrogen bond in the stabilization of various conformers using quantum mechanical DFT (B3LYP) and MP2 methods. On the basis of relative energies, we have found nine conformational minima, which can interchange through the ring-puckering and the internal rotation of the OH and NH2 groups on the five-membered ring. The intramolecular hydrogen bonds such as OH∙∙∙∙π, NH∙∙∙∙π, NH∙∙∙∙OH and HN∙∙∙∙HO are expected to be of critical importance for the conformational stabilities. The intramolecular interactions of the minima have been analyzed by calculation of electron density (ρ) and Laplacian (ρ) at the bond critical points (BCPs) using atoms-in-molecule (AIM) theory. The existence or absence of OH∙∙∙∙π and NH∙∙∙∙π in cis-3-aminoindan-1-ol remains unclear since the geometrical investigation has not been confirmed by topological criteria. The results of theoretical calculations demonstrate that this compound exists predominantly in one ring-puckering form stabilized by strong hydrogen bond HN∙∙∙∙HO Interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lûpez-Garcìa M, Alfonso I, Gotor V (2004) Chem Eur J 10:3006–3014

    Article  Google Scholar 

  2. Vieth M, Cummins DJ (2000) J Med Chem 43:3020–3032

    Article  CAS  Google Scholar 

  3. Pÿrez C, Pastor M, Ortiz AR, Gago F (1998) J Med Chem 41:836–852

    Article  Google Scholar 

  4. Froimowitz M, Wu KM, Moussa A, Haidar RM, Juravyj J, George C, Gardner EL (2000) J Med Chem 43:4981–4992

    Article  CAS  Google Scholar 

  5. Gilad GM, Gilad VH (1999) J Pharmacol Exp Therap 291:39–43

    CAS  Google Scholar 

  6. Szulc ZM, Hannun YA, Bielawska A (2000) Tetrahedron Lett 41:7821–7824

    Article  CAS  Google Scholar 

  7. Kawabata T, Yamamoto K, Momose Y, Yoshida H, Nagaoka Y, Fuji K (2001) Chem Commun 2700–2701

  8. Lait SM, Rankic DA, Keay BA (2007) Chem Rev 107:767–796

    Article  CAS  Google Scholar 

  9. Balbás IM, Mendoza BED, Fernández-Zertuche M, Ordoñez M, Linzaga-Elizalde I (2012) Molecules 17:151–162

    Article  Google Scholar 

  10. André C, Calmès M, Escale F, Amblard M, Martinez J, Songis O (2012) Amino Acids 43:415–421

    Article  Google Scholar 

  11. Kinbara K, Katsumata Y, Saigo K (2002) Chem Lett 3:266–267

    Article  Google Scholar 

  12. Ottaviani P, Velino B, Caminati W (2006) J Mol Struct 795:194–197

    Article  CAS  Google Scholar 

  13. Al-Saadi AA, Wagner M, Laane J (2006) J Phys Chem A 110:12292–12297

    Article  CAS  Google Scholar 

  14. Al-Saadi AA, Ocola EJ, Laane J (2010) J Phys Chem A 114:7453–7456

    Article  CAS  Google Scholar 

  15. Hamza A (2010) Struct Chem 21:939–945

    Article  CAS  Google Scholar 

  16. Iga H, Isozaki T, Suzuki T, Ichimura T (2007) J Phys Chem A 111:5981–5987

    Article  CAS  Google Scholar 

  17. Velino B, Ottaviani P, Caminati W, Giardini A, Paladini A (2006) Chem Phys Chem 7:565–568

    Article  CAS  Google Scholar 

  18. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc., New York

    Google Scholar 

  19. Guemmour H, Kheffache D, Benaboura A (2011) J Mol Strut 1002:151–158

    Article  CAS  Google Scholar 

  20. Le Barbu-Debus K, Lahmani F, Zehnacker-Rentien A, Guchhait K (2006) Chem Phys Lett 422:218–225

    Article  Google Scholar 

  21. Bader RFW, Streitwieser A, Neuhaus A, Laidig KE, Speers P (1996) J Am Chem Soc 118:4959–4965

    Article  CAS  Google Scholar 

  22. Carrol MT, Chang C, Bader RFW (1988) Mol Phys 63:387–405

    Article  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 Revision B.04. Gaussian Inc, Wallingford

    Google Scholar 

  24. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Helgaker T, Jorgensen P, Olsen J (2000) Molecular Electronic-Structure Theory. Wiley, New York

  27. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  28. Koch U, Popelier P (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  29. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  30. McMahan MA, Sharma SD, Curl RF Jr (1979) J Mol Spectrosc 75:220–233

    Article  CAS  Google Scholar 

  31. van Mourik T, Gdanitz RJ (2002) J Chem Phys 116:9620–9623

    Article  Google Scholar 

  32. Miller BJ, Lane JR, Kjaergaard HG (2011) Phys Chem Chem Phys 13:14183–14193

    Article  CAS  Google Scholar 

  33. Lane JR, Contreras-García J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) J Chem Theory Comput 9:3263–3266

    Article  CAS  Google Scholar 

  34. Contreras-Garcia J, Yang W, Johnson ER (2011) J Phys Chem A 115:12983–12990

    Article  CAS  Google Scholar 

  35. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  36. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  37. Varetto U MOLEKEL 5.4.0.8; Swiss National Supercomputing Centre: Lugano, Switzerland

  38. Alonso JL, Pérez C, Sanz ME, López JC, Blanco S (2009) Phys Chem Chem Phys 11:617–627

    Article  CAS  Google Scholar 

  39. Isozaki T, Iga H, Suzuki T, Ichimura T (2007) J Chem Phys 126:214–304

    Article  Google Scholar 

  40. Laane J, Bondoc E, Sakurai S, Morris K, Meinander N, Choo J (2000) J Am Chem Soc 122:2628–2634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The reviewers of this manuscript are acknowledged for their helpful suggestions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djaffar Kheffache.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kheffache, D., Guemmour, H., Dekhira, A. et al. Conformational analysis and intramolecular hydrogen bonding of cis-3-aminoindan-1-ol: a quantum chemical study. J Mol Model 19, 4837–4847 (2013). https://doi.org/10.1007/s00894-013-1989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1989-3

Keywords

Navigation