Skip to main content
Log in

The intrinsic helical propensities of the helical fragments in prion protein under neutral and low pH conditions: a replica exchange molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Replica exchange molecular dynamics simulations in neutral and acidic aqueous solutions were employed to study the intrinsic helical propensities of three helices in both Syrian hamster (syPrP) and human (huPrP) prion proteins. The helical propensities of syPrP HA and huPrP HA are very high under both pH conditions, which implies that HA is barely involved in the helix-to-β transition. The SyPrP HB chain has a strong tendency to adopt an extended conformation, which is possibly involved in the mechanism of infectious prion diseases in Syrian hamster. HuPrP HC has more of a preference for the extended conformation than huPrP HA and huPrP HB do, which leads to the conjecture that it is more likely to be the source of β-rich structure for human prion protein. We also noticed that the presence of salt bridges is not correlated with helical propensity, indicating that salt bridges do not stabilize helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Prusiner SB (1998) Proc Natl Acad Sci USA 95:13363

    Google Scholar 

  2. Caughey B (2003) Br Med Bull 66:109

    Article  CAS  Google Scholar 

  3. Mastrianni JA (2004) Clin Neurosci Res 3:469

    Article  CAS  Google Scholar 

  4. Millhauser GL (2007) Copper and the prion protein: methods, structures, function, and disease. In: Annual review of physical chemistry, vol 58. Annual Reviews, Palo Alto, p 299

  5. Khan MQ, Sweeting B, Mulligan VK, Arslan PE, Cashman NR, Pai EF, Chakrabartty A (2010) Proc Natl Acad Sci USA 107:19808

    Google Scholar 

  6. Gibbs CJ Jr, Gajdusek DC (1973) Science 182:67

    Article  Google Scholar 

  7. Thomzig A, Cardone F, Kruger D, Pocchiari M, Brown P, Beekes M (2006) J Gen Virol 87:251

    Article  CAS  Google Scholar 

  8. Kimberlin RH, Walker C (1977) J Gen Virol 34:295

    Article  CAS  Google Scholar 

  9. Bessen RA, Marsh RF (1992) J Gen Virol 73(Pt 2):329

    Article  Google Scholar 

  10. Lasmezas CI, Deslys JP, Robain O, Jaegly A, Beringue V, Peyrin JM, Fournier JG, Hauw JJ, Rossier J, Dormont D (1997) Science 275:402

    Article  CAS  Google Scholar 

  11. Chandler RL (1961) Lancet 1:1378

    Article  CAS  Google Scholar 

  12. Hill AF, Joiner S, Linehan J, Desbruslais M, Lantos PL, Collinge J (2000) Proc Natl Acad Sci USA 97:10248

    Google Scholar 

  13. Barlow RM, Rennie JC (1976) Res Vet Sci 21:110

    CAS  Google Scholar 

  14. Chianini F, Fernández-Borges N, Vidal E, Gibbard L, Pintado B, de Castro J, Priola SA, Hamilton S, Eaton SL, Finlayson J, Pang Y, Steele P, Reid HW, Dagleish MP, Castilla J (2012) Proc Natl Acad Sci USA 109:5080

    Google Scholar 

  15. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE (1993) Proc Natl Acad Sci USA 90:10962

    Google Scholar 

  16. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) J Mol Biol 273:729

    Article  CAS  Google Scholar 

  17. Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK (2007) Proc Natl Acad Sci USA 104:18946

    Google Scholar 

  18. Lu XJ, Wintrode PL, Surewicz WK (2007) Proc Natl Acad Sci USA 104:1510

    Google Scholar 

  19. Swietnicki W, Morillas M, Chen SG, Gambetti P, Surewicz WK (2000) Biochemistry 39:424

    Article  CAS  Google Scholar 

  20. Morillas M, Vanik DL, Surewicz WK (2001) Biochemistry 40:6982

    Article  CAS  Google Scholar 

  21. Cobb NJ, Apetri AC, Surewicz WK (2008) J Biol Chem 283:34704

    Article  CAS  Google Scholar 

  22. Wuthrich K, Riek R (2001) Adv Protein Chem 57:55

    Article  CAS  Google Scholar 

  23. Harris DA (1999) Clin Microbiol Rev 12:429

    CAS  Google Scholar 

  24. Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF, Glenner GG (1983) Cell 35:349

    Article  CAS  Google Scholar 

  25. Abid K, Soto C (2006) Cell Mol Life Sci 63:2342

    Article  CAS  Google Scholar 

  26. Cobb NJ, Surewicz WK (2009) Biochemistry 48:2574

    Article  CAS  Google Scholar 

  27. Nguyen JT, Inouye H, Baldwin MA, Fletterick RJ, Cohen FE, Prusiner SB, Kirschner DA (1995) J Mol Biol 252:412

    Article  CAS  Google Scholar 

  28. Jackson GS, Hill SF, Joseph C, Hosszu L, Power A, Waltho JP, Clarke AR, Collinge J (1999) Biochim Biophys Acta Protein Struct Mol Enzymol 1431:1

    Article  CAS  Google Scholar 

  29. Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (1991) Biochemistry 30:7672

    Article  CAS  Google Scholar 

  30. Swietnicki W, Petersen R, Gambetti P, Surewicz WK (1997) J Biol Chem 272:27517

    Article  CAS  Google Scholar 

  31. Hornemann S, Glockshuber R (1998) Proc Natl Acad Sci USA 95:6010

    Google Scholar 

  32. DeMarco ML, Daggett VCR (2005) Biol 328:847

    CAS  Google Scholar 

  33. DeMarco ML, Silveira J, Caughey B, Daggett V (2006) Biochemistry 45:15573

    Article  CAS  Google Scholar 

  34. DeMarco ML, Daggett V (2004) Proc Natl Acad Sci USA 101:2293

    Google Scholar 

  35. Ding F, LaRocque JJ, Dokholyan NV (2005) J Biol Chem 280:40235

    Article  CAS  Google Scholar 

  36. Dima RI, Thirumalai D (2004) Proc Natl Acad Sci USA 101:15335

    Article  CAS  Google Scholar 

  37. Langella E, Improta R, Barone V (2004) Biophys J 87:3623

    Article  CAS  Google Scholar 

  38. De Simone A, Dodson GG, Verma CS, Zagari A, Fraternali F (2005) Proc Natl Acad Sci USA 102:7535

    Google Scholar 

  39. De Simone A, Zagari A, Derreumaux P (2007) Biophys J 93:1284

    Article  Google Scholar 

  40. Langella E, Improta R, Crescenzi O, Barone V (2006) Proteins 64:167

    Article  CAS  Google Scholar 

  41. Gu W, Wang TT, Zhu J, Shi YY, Liu HY (2003) Biophys Chem 104:79

    Article  CAS  Google Scholar 

  42. Barducci A, Chelli R, Procacci P, Schettino V (2005) Biophys J 88:1334

    Article  CAS  Google Scholar 

  43. Sekijima M, Motono C, Yamasaki S, Kaneko K, Akiyama Y (2003) Biophys J 85:1176

    Article  CAS  Google Scholar 

  44. Shamsir MS, Dalby AR (2005) Proteins 59:275

    Article  CAS  Google Scholar 

  45. Shamsir MS, Dalby AR (2007) Biophys J 92:2080

    Article  CAS  Google Scholar 

  46. van der Kamp MW, Daggett V (2010) Biophys J 99:2289

    Article  Google Scholar 

  47. Campos SRR, Machuqueiro M, Baptista AM (2010) J Phys Chem B 114:12692

    Article  CAS  Google Scholar 

  48. Alonso DOV, DeArmond SJ, Cohen FE, Daggett V (2001) Proc Natl Acad Sci USA 98:2985

    Google Scholar 

  49. Vila-Vicosa D, Campos SRR, Baptista AM, Machuqueiro M (2012) J Phys Chem B 116:8812

    Article  CAS  Google Scholar 

  50. Hornemann S, Korth C, Oesch B, Riek R, Wider G, Wuthrich K, Glockshuber R (1997) FEBS Lett 413:277

    Article  CAS  Google Scholar 

  51. Norstrom EM, Mastrianni JA (2006) J Virol 80:8521

    Article  CAS  Google Scholar 

  52. Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Proc Natl Acad Sci USA 99:3563

    Google Scholar 

  53. Hansmann UHE, Okamoto Y (1999) Curr Opin Struct Biol 9:177

    Article  CAS  Google Scholar 

  54. Mitsutake A, Sugita Y, Okamoto Y (2001) Biopolymers 60:96

    Article  CAS  Google Scholar 

  55. Sugita Y, Okamoto Y (1999) Chem Phys Lett 314:141

    Article  CAS  Google Scholar 

  56. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins 65:712

    Article  CAS  Google Scholar 

  57. Onufriev A, Bashford D, Case DA (2004) Proteins 55:383

    Article  CAS  Google Scholar 

  58. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327

    Article  CAS  Google Scholar 

  59. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) J Comput Chem 13:1011

    Article  CAS  Google Scholar 

  60. Chodera JD, Swope WC, Pitera JW, Seok C, Dill KA (2007) J Chem Theory Comput 3:26

    Article  CAS  Google Scholar 

  61. Ziegler J, Sticht H, Marx UC, Muller W, Rosch P, Schwarzinger S (2003) J Biol Chem 278:50175

    Article  CAS  Google Scholar 

  62. Chen J, Thirumalai D (2012) Biochemistry 52:310

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China (grant nos. 10974054, 20933002, and 21173082). We also thank Prof. Donghai Lin and Dr. Yi Wen at Xiamen University for helpful discussions. The High Performance Computer Center of East China Normal University is acknowledged for its support in allowing us CPU time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Mei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Zeng, J., Gao, Y. et al. The intrinsic helical propensities of the helical fragments in prion protein under neutral and low pH conditions: a replica exchange molecular dynamics study. J Mol Model 19, 4897–4908 (2013). https://doi.org/10.1007/s00894-013-1985-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1985-7

Keywords

Navigation