Skip to main content
Log in

A DFT study of the Al2Cl6-catalyzed Friedel–Crafts acylation of phenyl aromatic compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The reaction pathways of several Friedel–Crafts acylations involving phenyl aromatic compounds were studied using density functional theory. The reactions were related to the Friedel–Crafts polycondensation of polyaryletherketones. In particular, the acylation of benzene with benzoyl chloride to form benzophenone and variations on this reaction were investigated. The acylation of benzene by one molecule of terephthaloyl chloride or isophthaloyl chloride as well as acylations at the m-, o-, and p-positions of diphenyl ether with one molecule of benzoyl chloride were studied. Adding an additional acyl chloride group to the electrophile appeared to have little influence on the reaction pathway, although the activation energy for the C–C bond-forming steps that occurred when isophthaloyl choride was used was different to the activation energy observed when terephthaloyl chloride was used. Upon changing the nucleophile to diphenyl ether, the reactivity changed according to the trend predicted on based on the o-, p-directing effects of the ether group. The deprotonation step that restored aromaticity varied widely according to the reaction. The rate-determining step in all of the studied reactions was the formation of the acylium ion, followed in importance by either the formation of the Wheland intermediate or the abstraction of hydrogen, depending on the reactivity of the nucleophile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–d
Fig. 6
Fig. 7
Fig. 8a–d

Similar content being viewed by others

References

  1. Carey FA, Sundberg RJ (2007) Advanced organic chemistry, part A: structure and mechanisms, 5th edn. Springer, New York

  2. Friedel C, Crafts JM (1877) Compt Rend 84:1392–1395, 1450–1454

    Google Scholar 

  3. Olah GA (1963) Friedel–Crafts and related reactions, vol III, acylation and related reactions. Interscience, New York

  4. Eyley SC (1991) Comp Org Synth 2:707–731

    Article  Google Scholar 

  5. Heaney H (1991) Comp Org Synth 2:733–752

    Article  Google Scholar 

  6. Cassimatis D, Bonnin JP, Theophanides T (1970) Can J Chem 48:3860–3871. doi:10.1139/v70-650

    Article  CAS  Google Scholar 

  7. Csihony S, Mehdi H, Homonnay Z, Vértes A, Farkas Ö, Horváth IT (2002) J Chem Soc Dalton Trans 680–685. doi:10.1039/B109303G

  8. Xu T, Barich DH, Torres PD, Nicholas JB, Haw JF (1997) J Am Chem Soc 119:396–405. doi:10.1021/ja962944n

    Article  CAS  Google Scholar 

  9. Olah GA (1971) Acc Chem Res 4:240–248. doi:10.1021/ar50043a002

    Article  CAS  Google Scholar 

  10. Olah GA, Kobayashi S, Tashiro M (1972) J Am Chem Soc 94:7448–7461. doi:10.1021/ja00776a030

    Article  CAS  Google Scholar 

  11. Boer FP (1968) J Am Chem Soc 94:6706–6717. doi:10.1021/ja01026a025

    Article  Google Scholar 

  12. Chevrier B, Weiss R (1974) Angew Chem 86:12–21. doi:10.1002/ange.19740860103

    Article  CAS  Google Scholar 

  13. Tarakeshwar P, Lee JY, Kim KS (1998) J Phys Chem A 102:2253–2255. doi:10.1021/jp9807322

    Article  CAS  Google Scholar 

  14. Tarakeshwar P, Kim KS (1999) J Phys Chem A 103:9116–9124. doi:10.1021/jp992019y

    Article  CAS  Google Scholar 

  15. Jasien PG (1995) J Phys Chem 99:6502–6508. doi:10.1021/j100017a034

    Article  CAS  Google Scholar 

  16. Volkov AN, Timoshkin AY, Suvorov AV (2004) Int J Quantum Chem 100:412–418. doi:10.1002/qua.20182

    Article  CAS  Google Scholar 

  17. Volkov AN, Timoshkin AY, Suvorov AV (2005) Int J Quantum Chem 104:256–260. doi:10.1002/qua.20420

    Article  CAS  Google Scholar 

  18. Chattaraj PK, Sarkar U, Elango M, Parthasarathi R, Subramanian V (2005) Electrophilicity as a possible descriptor of the kinetic behavior. http://arxiv.org/abs/physics/0509089. Accessed 18 Jan 2013

  19. Osamura Y, Terada K, Kobayashi Y, Okazaki R, Ishiyama Y (1999) J Mol Struct THEOCHEM 461–462:399–416. doi:10.1016/S0166-1280(98)00452-7

    Article  Google Scholar 

  20. Gothelf AS, Hansen T, Jørgensen KA (2001) J Chem Soc Perkin Trans 1:854–860. doi:10.1039/B009669P

    Article  Google Scholar 

  21. Olah GA, Török B, Joschek JP, Bucsi I, Esteves PM, Rasul G, Prakash GKS (2002) J Am Chem Soc 124:11379–11391. doi:10.1021/ja020787o

    Article  CAS  Google Scholar 

  22. Yamabe S, Yamazaki S (2009) J Phys Org Chem 22:1094–1103. doi:10.1002/poc.1564

    Article  CAS  Google Scholar 

  23. Olah GA, Moffatt ME, Kuhn SJ, Hardie BA (1964) J Am Chem Soc 86:2198–2202. doi:10.1021/ja01065a019

    Article  CAS  Google Scholar 

  24. Olah GA, Lukas J, Lukas E (1969) J Am Chem Soc 91:5319–5323. doi:10.1021/ja01047a021

    Article  CAS  Google Scholar 

  25. Olah GA, Kobayashi S (1971) J Am Chem Soc 93:6964–6967. doi:10.1021/ja00754a045

    Article  CAS  Google Scholar 

  26. Effenberger F, Maier AH (2001) J Am Chem Soc 123:3429–3433. doi:10.1021/ja0022066

    Article  CAS  Google Scholar 

  27. Olah GA, Kuhn SJ, Flood SH, Hardie BA (1964) J Am Chem Soc 86:2203–2209. doi:10.1021/ja01065a020

    Article  CAS  Google Scholar 

  28. Dowdy D, Gore PH, Waters DN (1991) J Chem Soc Perkin Trans 2:1149–1159. doi:10.1039/P29910001149

    Google Scholar 

  29. Ehrenson S, Brownlee RTC, Taft RW (1973) A generalized treatment of substituent effects in the benzene series. A statistical analysis by the dual substituent parameter equation. In: Streitweiser A Jr, Taft RW (eds) Progress in physical organic chemistry, vol 10. Wiley, New York, pp 1–80

  30. Rosato Dominick V, Rosato Donald V, Rosato MV (2004) Plastic product material and process selection handbook. Elsevier, Oxford

  31. Salamone JC (ed) (1999) Concise polymeric materials encyclopedia. CRC, Boca Raton

  32. Johnson RN, Farnham AG, Clendinning RA, Hale WF, Merriam CN (1967) J Polym Sci A-1 5:2375–2398. doi:10.1002/pol.1967.150050916

    Article  CAS  Google Scholar 

  33. Attwood TE, Dawson PC, Freeman JL, Hoy LR, Rose JB, Staniland PA (1981) Polymer 22:1096–1103. doi:10.1016/0032-3861(81)90299-8

    Article  CAS  Google Scholar 

  34. Rose JB, Staniland PA (1982) Thermoplastic aromatic polyetherketones. US Patent 4,320,224

  35. Fukawa I, Tanabe T, Dozono T (1991) Macromolecules 24:3838–3844. doi:10.1021/ma00013a016

    Article  CAS  Google Scholar 

  36. Bonner WH (1962) Aromatic polyketones and preparation thereof. US Patent 3,065,205

  37. Goodman I, McIntyre JE, Russel W (1964) Process for the preparation of polymeric ketones. Brit Patent 971,227; Chem Abstr (1964) 61:14805b

    Google Scholar 

  38. Brugel E (1991) Stabilization of poly(ether ketone ketones). US Patent 4,987,171

  39. Gay FP, Brunette CM (1989) Ordered polyetherketones, US Patent 4,816,556

  40. Rueda DR, Zolotukhin MG, Cagiao ME, Ania F, Dosière M, Villers D, de Abajo J (2001) J Macromol Sci B Phys 40:709–731. doi:10.1081/MB-100107557

    Article  Google Scholar 

  41. Ueda M, Sato M (1987) Macromolecules 20:2675–2678. doi:10.1021/ma00177a007

    Article  CAS  Google Scholar 

  42. Zolotukhin MG, Rueda DR, Bruix M, Cagiao ME, Balta Calleja FJ, Bulai A, Gileva NG, Van der Elst L (1997) Polymer 38:3441–3454. doi:10.1016/S0032-3861(96)00909-3

    Article  CAS  Google Scholar 

  43. Frisch MJ et al. (2009) GAUSSIAN 09. Gaussian, Inc., Wallingford

  44. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620. doi:10.1039/B810189B

    Article  CAS  Google Scholar 

  45. Chai JD, Head-Gordon M (2008) J Chem Phys 128:084106–084121. doi:10.1063/1.2834918

    Article  Google Scholar 

  46. Becke AD (1993) J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  48. Stephens PJ, Devlin FJ, Chabalowski MJ, Frisch MJ (1994) J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  49. Burke KJ (2012) Chem Phys 136:150901–150908. doi:10.1063/1.4704546

    Google Scholar 

  50. Tsuzuki S, Luthi HP (2001) J Chem Phys 114:3949–3957. doi:10.1063/1.1344891

    Article  CAS  Google Scholar 

  51. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918. doi:10.1021/jp048147q

    Article  CAS  Google Scholar 

  52. Zhao Y, Truhlar DG (2005) J Chem Theory Comput 1:415–432. doi:10.1021/ct049851d

    Article  CAS  Google Scholar 

  53. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094. doi:10.1021/cr9904009

    Article  CAS  Google Scholar 

  54. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041. doi:10.1063/1.474659

    Article  Google Scholar 

  55. Reed AE, Weinstock RB, Weinhold F (1984) J Chem Phys 83:735–746. doi:10.1063/1.449486

    Article  Google Scholar 

  56. Politzer P, Mulliken RS (1971) J Chem Phys 55:5135–5137. doi:10.1063/1.1675638

    Article  CAS  Google Scholar 

  57. Fukui K (1981) Acc Chem Res 14:363–368. doi:10.1021/ar00072a001

    Article  CAS  Google Scholar 

  58. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2164. doi:10.1063/1.456010

    Article  CAS  Google Scholar 

  59. Braga AAC, Ujaque G, Maseras F (2006) Organometallics 25:3647–3658. doi:10.1021/om060380i

    Article  CAS  Google Scholar 

  60. Fukuzumi S, Kochi JK (1982) J Am Chem Soc 104:7599–7609

    Article  CAS  Google Scholar 

  61. Boys SF, Bernardi F (1970) Mol Phys 19:553–566. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  62. McDaniel DH, Brown HC (1958) J Org Chem 23:420–427. doi:10.1021/jo01097a026

    Article  CAS  Google Scholar 

  63. Stock LM, Brown HC (1963) Adv Phys Org Chem 1:35–154. doi:10.1016/S0065-3160(08)60277-4

    Article  CAS  Google Scholar 

  64. Brătulescu G (2003) Rev Roum Chim 48:175–177

    Google Scholar 

  65. Sawant DP, Devassy BM, Halligudi SB (2004) J Mol Catal Chem 217:211–217. doi:10.1016/j.molcata.2004.03.038

    Article  CAS  Google Scholar 

  66. Pitoňák M, Neogrády P, Řezáč J, Jurečka P, Urban M, Hobza P (2008) J Chem Theory Comput 4:1829–1834. doi:10.1021/ct800229h

    Article  Google Scholar 

  67. Cooper VR (2010) Phys Rev B 81:161104

    Article  Google Scholar 

  68. Zielinski F, Tognetti V, Joubert L (2012) Chem Phys Lett 27:67–72. doi:10.1016/j.cplett.2012.01.011

    Article  Google Scholar 

  69. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050. doi:10.1021/ja00326a036

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Centre de Resources Informatique de Haute-Normandie (CRIHAN), and in particular Dr. P. Bousquet-Melou and Mr. H. Prigent. The authors would like to thank the European Regional Development Fund (ERDF), the Conventions Industrielles de Formation pour la Recherche (CIFRE), the Region Haute-Normandie, and the Arkema group that funded this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Joubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melissen, S.T.A.G., Tognetti, V., Dupas, G. et al. A DFT study of the Al2Cl6-catalyzed Friedel–Crafts acylation of phenyl aromatic compounds. J Mol Model 19, 4947–4958 (2013). https://doi.org/10.1007/s00894-013-1984-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1984-8

Keywords

Navigation