Skip to main content
Log in

Design of Lewis acid–base complex: enhancing the stability and first hyperpolarizability of large excess electron compound

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present paper, a new type of Lewis acid–base complex BX3•••Li@Calix[4]pyrrole (X = H and F) was designed and assembled based on electride molecule Li@calix[4]pyrrole (as a Lewis base) and the electron deficient molecule BX3 (as a Lewis acid) by employing quantum mechanical calculation. The new Lewis acid–base complex offers an interesting push-excess electron-pull (P-e-P) framework to enhance the stability and nonlinear optical (NLO) response. To measure the nonlinear optical response, static first hyperpolarizabilities (β 0) are exhibited. Significantly, point-face assembled Lewis acid–base complex BF3•••Li@Calix[4]pyrrole (II) has considerable first hyperpolarizabilities (β 0) value (1.4 × 106 a.u.), which is about 117 times larger than reported 11,721 a.u. of electride Li@Calix[4]pyrrole. Further investigations show that, in BX3•••Li@Calix[4]pyrrole with P-e-P framework, a strong charge-transfer transition from the ground state to the excited state contributes to the enhancement of first hyperpolarizability. Theory calculation of enthalpies of reaction (ΔrH0) at 298 K demonstrates that it is feasible to synthetize the complexes BX3•••Li@Calix[4]pyrrole. In addition, compared with Li@Calix[4]pyrrole, the vertical ionization potential (VIP) and HOMO–LUMO gap of BX3•••Li@Calix[4]pyrrole have obviously increased, due to the introduction of the Lewis acid molecule BX3. The novel Lewis acid–base NLO complex possesses not only a large nonlinear optical response but also higher stability.

A novel Lewis acid–base complex is first proposed by the combination of usual Lewis acid and an electride. It offers an interesting push-excess electron-pull framework to enhance the stability and nonlinear optical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zyss J (1994) Molecular nonlinear optics: materials, physics and devices. Academic, New York

    Google Scholar 

  2. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94:195242

    Article  Google Scholar 

  3. Torre G, Vázquez P, López FA, Torres T (2004) Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev 104:3723–3750

    Article  Google Scholar 

  4. Ostroverkhova O, Moerner WE (2004) Organic photorefractives: mechanisms, materials, and applications. Chem Rev 104:3267–3314

    Article  CAS  Google Scholar 

  5. Eisenthal KB (2006) Second harmonic spectroscopy of aqueous nano- and microparticle interfaces. Chem Rev 106:1462–1477

    Article  CAS  Google Scholar 

  6. Papadopoulos MG, Leszczynski J, Sadlej AJ (2006) Nonlinear optical properties of matter: from molecules to condensed phases. Kluwer, Dordrecht

    Google Scholar 

  7. Avramopoulos A, Reis H, Li J, Papadopoulos MG (2004) The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study. J Am Chem Soc 126:6179–6184

    Article  CAS  Google Scholar 

  8. Ma F, Li ZR, Zhou ZJ, Wu D, Li Y, Wang YF, Li ZS (2010) Modulated nonlinear optical responses and charge transfer transition in endohedral fullerene dimers Na@C60C60@F with n-fold covalent Bond (n = 1, 2, 5, and 6) and long range ion bond. J Phys Chem C 114:11242–11247

    Article  CAS  Google Scholar 

  9. Nakano M, Kishi R, Ohta S, Takahashi H, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2007) Relationship between third-order nonlinear optical properties and magnetic interactions in open-shell systems: a new paradigm for nonlinear optics. Phys Rev Lett 99:033001

    Article  Google Scholar 

  10. Botek E, Castet F, Champagne B (2006) Theoretical investigation of the second-order nonlinear optical properties of helical pyridine–pyrimidine oligomers. Chem Eur J 12:8687–8695

    Article  CAS  Google Scholar 

  11. Xu HL, Wang FF, Li ZR, Zhou ZJ, Wu D, Chen W, Wang BQ, Li Y, Gu FL, Aoki Y (2009) The nitrogen edge-doped effect on the static first hyperpolarizability of the supershort single-walled carbon nanotubeJ. Comput Chem 30:1128–1134

    Article  CAS  Google Scholar 

  12. Muhammad S, Xu HL, Janjua MR, Su ZM, Muhammad N (2010) Quantum chemical study of benzimidazole derivatives to tune the second-order nonlinear optical molecular switching by proton abstraction. Phys Chem Chem Phys 12:4791–4799

    Article  CAS  Google Scholar 

  13. Zhou ZJ, Li XP, Ma F, Liu ZB, Li ZR, Huang XR, Sun CC (2011) Exceptionally large second-order nonlinear optical response in donor–graphene nanoribbon–acceptor systems. Chem Eur J 17:2414–2419

    Article  CAS  Google Scholar 

  14. Zyss J, Ledoux I (1994) Nonlinear optics in multipolar media: theory and experiments. Chem Rev 94:77–105

    Article  CAS  Google Scholar 

  15. Janjua M, Liu CG, Guan W, Zhuang J, Muhammad S, Yan LK, Su ZM (2009) Prediction of remarkably large second-order nonlinear optical properties of organoimido-substituted hexamolybdates. J Phys Chem A 113:3576–3587

    Article  CAS  Google Scholar 

  16. Yang JS, Liau KL, Li CY, Chen MY (2007) Meta conjugation effect on the torsional motion of aminostilbenes in the photoinduced intramolecular charge-transfer state. J Am Chem Soc 129:13183

    Article  CAS  Google Scholar 

  17. Maury O, Viau L, Sénéchal K, Corre B, Guégan J-P, Renouard T, Ledoux I, Zyss J, Le Bozec H (2004) Synthesis, linear, and quadratic-nonlinear optical properties of octupolar D3 and D2d bipyridyl metal complexes. Chem Eur J 10:4454–4466

    Article  CAS  Google Scholar 

  18. Lee MJ, Piao MJ, Jeong MY, Lee SH, Kang KM, Jeon SJ, Lim TG, Cho BR (2013) Novel azo octupoles with large first hyperpolarizabilities. J Mater Chem 13:1030–1037

    Article  Google Scholar 

  19. Lee SH, Park JR, Jeong MY, Kim HM, Li SJ, Song J, Ham S, Jeon SJ, Cho BR (2006) First hyperpolarizabilities of 1,3,5-tricyanobenzene derivatives: Origin of larger β values for the octupoles than for the dipoles. Chem Phys Chem 7:206–212

    Article  CAS  Google Scholar 

  20. Coe BJ (2006) Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. Acc Chem Res 39:383–393

    Article  CAS  Google Scholar 

  21. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@calix[4]pyrrole. J Am Chem Soc 127:10977–10981

    Article  CAS  Google Scholar 

  22. Xu HL, Li ZR, Wu D, Ma F, Li ZJ, Gu FL (2009) Lithiation and Li-doped effects of [5]cyclacene on the static first hyperpolarizability. J Phys Chem C 113:4984–4986

    Article  CAS  Google Scholar 

  23. Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) Structures and large NLO responses of new electrides: Li-doped fluorocarbon chain. J Am Chem Soc 129:2967–2970

    Article  CAS  Google Scholar 

  24. Ma F, Li ZR, Xu HL, Li ZJ, Li ZS, Aoki Y, Gu FL (2008) Lithium salt electride with an excess electron pair—a class of nonlinear optical molecules for extraordinary frst hyperpolarizability. J Phys Chem A 112:11462–11467

    Article  CAS  Google Scholar 

  25. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL, Aoki Y (2006) Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M (M = Li, Na, and K): alkali anion atomic number dependence. J Am Chem Soc 128:1072–1073

    Article  CAS  Google Scholar 

  26. Wang FF, Li ZR, Wu D, Wang BQ, Li Y, Li ZJ, Chen W, Yu GT, Gu FL, Aoki Y (2008) Structure and considerable static first hyperpolari- zebilities: new organic alkalides (M+@n6adz) M′-(M, M′ = Li, Na, K;n = 2, 3) with cation inside and anion outside of the cage complexants. J Phys Chem B 112:1090–1094

    Article  CAS  Google Scholar 

  27. Abbotto A, Beverina L, Manfredi N, Pagani GA, Archetti G, Kuball H, Wittenburg C, Heck J, Holtmann J (2009) Second-order nonlinear optical activity of dipolar chromophores based on pyrrole-hydrazono donor moieties. Chem Eur J 15:6175–6185

    Article  CAS  Google Scholar 

  28. Mo Y, Song L, Wu W, Zhang Q (2004) Charge transfer in the electron donor — acceptor complex BH3NH3. J Am Chem Soc 126:3974–3982

    Article  CAS  Google Scholar 

  29. Stephan DW (2009) Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Trans. 3129–3136

  30. Schmitt AL, Schnee G, Weltera R, Dagorne S (2010) Unusual reactivity in organoaluminium and NHC chemistry: deprotonation of AlMe3 by an NHC moiety involving the formation of a sterically bulky NHC–AlMe3 Lewis adduct. Chem Commun 46:2480–2482

    Article  CAS  Google Scholar 

  31. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  32. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425

    Article  CAS  Google Scholar 

  33. Frisch MJ et al. (2010) Gaussian 09W, revision A.02. Gaussian, Inc, Wallingford

    Google Scholar 

  34. Buckingham AD (1967) Permanent and induced molecular moments and long-range intermolecular forces. Adv Chem Phys 12:107–142

    Article  CAS  Google Scholar 

  35. Mclean AD, Yoshimine M (1967) Theory of molecular polarizabilities. J Chem Phys 47:1927–1935

    Article  CAS  Google Scholar 

  36. Chen W, Li ZR, Wu D, Li RY, Sun CC (2005) Inverse sodium hydride: density functional theory study of the large nonlinear optical properties. J Phys Chem A 109:2920–2924

    Article  CAS  Google Scholar 

  37. Li ZJ, Li ZR, Wang FF, Luo C, Ma F, Wu D, Wang Q, Huang XR (2009) A dependence on the petal number of the static and dynamic first hyperpolarizability for electride molecules: many-petal-shaped Li-doped cyclic polyamines. J Phys Chem A 113:2961–2966

    Article  CAS  Google Scholar 

  38. Jing YQ, Li ZR, Wu D, Li Y, Wang BQ (2006) What is the role of the complexant in the large first hyperpolarizability of sodide systems Li(NH3)nNa (n = 1–4)? J Phys Chem B 110:11725–11729

    Article  CAS  Google Scholar 

  39. Chen W, Li ZR, Wu D, Li RY, Sun CC (2005) Theoretical investigation of the large nonlinear optical properties of (HCN)n clusters with Li atom. J Phys Chem B 109:601–608

    Article  CAS  Google Scholar 

  40. Muhammad S, Xu HL, Liao Y, Kan YH, Su ZM (2009) Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131:11833

    Article  CAS  Google Scholar 

  41. Hu YH, Ruckenstein E (2005) Endohedral chemistry of C60-based fullerene cages. J Am Chem Soc 127:11277–11282

    Article  CAS  Google Scholar 

  42. Mikhail YR, James EJ, Rui HH, Dye JL (2005) Design and synthesis of a thermally stable organic electride. J Am Chem Soc 127:12416–12422

    Article  Google Scholar 

  43. Ichimura AS, Dye JL (2002) Toward inorganic electrides. J Am Chem Soc 124:1170–1171

    Article  CAS  Google Scholar 

  44. Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I, Hosono H (2003) High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e). Science 301:626–629

    Article  CAS  Google Scholar 

  45. Zhong RL, Xu HL, Muhammad S, Zhang J, Su ZM (2002) The stability and nonlinear optical properties: encapsulation of an excess electron compound LiCNLi within boron nitride nanotubes. J Mater Chem 22:2196–2202

    Article  Google Scholar 

  46. Blanchard-Desce M, Alain V, Bedworth PV, Marder SR, Fort A, Runser C, Barzoukas M, Lebus S, Wortmann R (1997) Large quadratic hyperpolarizabilities with donor–acceptor polyenes exhibiting optimum bond length alternation: correlation between structure and hyperpolarizability. Chem Eur J 3:1091–1104

    Article  CAS  Google Scholar 

  47. Champagne B, Perpete EA, Jacquemin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push − pull π-conjugated systems. J Phys Chem A 104:4755–4763

    Article  CAS  Google Scholar 

  48. Xiao D, Bulat FA, Yang WT, Beratan DN (2008) A donor-nanotube paradigm for nonlinear optical materials. Nano Lett 8:2814–2818

    Article  CAS  Google Scholar 

  49. Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446–457

    Article  CAS  Google Scholar 

  50. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21303065 and 21364009), the Natural Science Foundation of Anhui Province (No. 10040606Q55) and Anhui University Natural Science Research Project (No.KJ2013B242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 882 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, F., Miao, T., Zhou, Z. et al. Design of Lewis acid–base complex: enhancing the stability and first hyperpolarizability of large excess electron compound. J Mol Model 19, 4805–4813 (2013). https://doi.org/10.1007/s00894-013-1982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1982-x

Keywords

Navigation