Skip to main content
Log in

Stereoselectivity of chalcone isomerase with chalcone derivatives: a computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into flavonoids. The activity of CHI is essential for the biosynthesis of flavonoids precursors of floral pigments and phenylpropanoid plant defense compounds. In the present study, we explored the detailed binding structures and binding free energies for two different active site conformations of CHI with s-cis/s-trans conformers of three chalcone compounds by performing molecular dynamics (MD) simulations and binding free energy calculations. The computational results indicate that s-cis/s-trans conformers of chalcone compounds are orientated in the similar binding position in the active site of CHI and stabilized by the different first hydrogen bond network and the same second hydrogen bond network. The first hydrogen bond network results in much lower binding affinity of s-trans conformer of chalcone compound with CHI than that of s-cis conformer. The conformational change of the active site residue T48 from indirectly interacting with the substrate via the second hydrogen bond network to directly forming the hydrogen bond with the substrates cannot affect the binding mode of both conformers of chalcone compounds, but remarkably improves the binding affinity. These results show that CHI has a strong stereoselectivity. The calculated binding free energies for three chalcone compounds with CHI are consistent with the experimental activity data. In addition, several valuable insights are suggested for future rational design and discovery of high-efficiency mutants of CHI.

Stereoselectivity of chalcone isomerase with chalcone derivatives

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085–1097

    CAS  Google Scholar 

  2. Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 25:173–199

    Article  CAS  Google Scholar 

  3. Long SR (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56(2):203–214

    Article  CAS  Google Scholar 

  4. Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends Plant Sci 4(10):394–400

    Article  Google Scholar 

  5. Setchell KD, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129(3):758S–767S

    CAS  Google Scholar 

  6. Bednar RA, Hadcock JR (1988) Purification and characterization of chalcone isomerase from soybeans. J Biol Chem 263(20):9582–9588

    CAS  Google Scholar 

  7. Jung W, Yu O, Lau SM, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18(2):208–212

    Article  CAS  Google Scholar 

  8. DellaPenna D (1999) Nutritional genomics: manipulating plant micronutrients to improve human health. Science 285(5426):375–379

    Article  CAS  Google Scholar 

  9. Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7(9):786–791

    Article  CAS  Google Scholar 

  10. Jez JM, Bowman ME, Noel JP (2002) Role of hydrogen bonds in the reaction mechanism of chalcone isomerase. Biochemistry 41(16):5168–5176

    Article  CAS  Google Scholar 

  11. Jez JM, Noel JP (2002) Reaction mechanism of chalcone isomerase. pH dependence, diffusion control, and product binding differences. J Biol Chem 277(2):1361–1369

    Article  CAS  Google Scholar 

  12. Ngaki MN, Louie GV, Philippe RN, Manning G, Pojer F, Bowman ME, Li L, Larsen E, Wurtele ES, Noel JP (2012) Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature 485(7399):530–533

    CAS  Google Scholar 

  13. Ruiz-Pernía JJ, Silla E, Tuñón I (2007) Enzymatic effects on reactant and transition states. The case of chalcone Isomerase. J Am Chem Soc 129(29):9117–9124

    Article  Google Scholar 

  14. Hur S, Newby ZER, Bruice TC (2004) Transition state stabilization by general acid catalysis, water expulsion, and enzyme reorganization in Medicago savita chalcone isomerase. Proc Natl Acad Sci 101(9):2730–2735

    Article  CAS  Google Scholar 

  15. Ruiz-Pernía JJ, Silla E, Tuñón I (2006) Comparative computational analysis of different active site conformations and substrates in a chalcone isomerase catalyzed reaction. J Phys Chem B 110(41):20686–20692

    Article  Google Scholar 

  16. Ruiz-Pernía JJ, Ia T, Moliner V, Hynes JT, Roca M (2008) Dynamic effects on reaction rates in a Michael addition catalyzed by chalcone isomerase. Beyond the frozen environment approach. J Am Chem Soc 130(23):7477–7488

    Article  Google Scholar 

  17. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  Google Scholar 

  18. Case DAD, T.A., Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006). Amber 9, University of California: San Francisco

  19. Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E01. Gaussian Inc, Wallingford

    Google Scholar 

  20. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  21. Miyamoto S, Kollman PA (1992) Settle - an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13(8):952–962

    Article  CAS  Google Scholar 

  22. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of Cartesian equations of motion of a system with constraints - molecular-dynamics of N-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  23. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    Article  CAS  Google Scholar 

  24. Gilson MK, Sharp KA, Honig BH (1988) Calculating the electrostatic potential of molecules in solution: method and error assessment. J Comput Chem 9(4):327–335

    Article  CAS  Google Scholar 

  25. Fu G, Liu H, Doerksen RJ (2012) Molecular modeling to provide insight into the substrate binding and catalytic mechanism of human biliverdin-IXα reductase. J Phys Chem B 116(32):9580–9594

    Article  CAS  Google Scholar 

  26. Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43(20):3786–3791

    Article  CAS  Google Scholar 

  27. Villà J, Štrajbl M, Glennon TM, Sham YY, Chu ZT, Warshel A (2000) How important are entropic contributions to enzyme catalysis? Proc Natl Acad Sci 97(22):11899–11904

    Article  Google Scholar 

  28. Zhang Y, Pan DB, Shen YL, Jin NZ, Liu HX, Yao XJ (2012) Understanding the molecular mechanism of the broad and potent neutralization of HIV-1 by antibody VRC01 from the perspective of molecular dynamics simulation and binding free energy calculations. J Mol Model 18(9):4517–4527

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major State Basic Research Development Programs of China (2011CBA00701, 2012CB721003), the National Natural Science Foundation of China (20973049), the Doctoral Foundation by the Ministry of Education of China (20112303110005), the SF for leading experts in academe of Harbin of China (2011RFJGS026), the Science Funds for Distinguished Young Scholar of Heilongjiang Province (JC201206), and the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2013056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhang or Ze-Sheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Zhang, H. & Li, ZS. Stereoselectivity of chalcone isomerase with chalcone derivatives: a computational study. J Mol Model 19, 4753–4761 (2013). https://doi.org/10.1007/s00894-013-1975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1975-9

Keywords

Navigation