Skip to main content
Log in

Theoretical studies on the structure, thermochemical and detonation properties of amino and nitroso substituted 1,2,4-triazol-5-one-N-oxides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

DFT calculations at the B3LYP/aug-cc-pVDZ level have been carried out to explore the structure, stability, electron density, heat of formation, detonation velocity and detonation pressure of substituted amino- and nitroso-1,2,4-triazol-5-one-N-oxides. Heats of formation of substituted triazol-5-one-N-oxides have been computed at the B3LYP/aug-cc-pVDZ level via isodesmic reaction procedure. Materials Studio 4.1 package was used to predict the crystal density of model compounds. Kamlet-Jacob equations were used to calculate detonation properties based on the calculated heat of explosion and crystal density. The designed compounds 4, 6, 7 and 8 have shown higher performance compared with those of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane and octanitrocubane. Atoms-in-molecule (AIM) analyses have also been carried out to understand the nature of intramolecular interactions in the designed molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Larina L, Lopyrev V (2009) Nitroazoles-Synthesis, Structure and Application. Springer, New York

    Book  Google Scholar 

  2. Lee KY, Coburn MD (1985) 3-Nitro-1,2,4-triazol-5-one, a less sensitive explosive, LA10302 MS. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  3. Klapotke TM (2007) High energy density materials. Springer, Berlin

    Book  Google Scholar 

  4. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.04. Gaussian, Inc, Pittsburgh, PA

    Google Scholar 

  5. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  6. Parr RG, Yang W (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, London

    Google Scholar 

  7. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  8. Vosko SH, Vilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  9. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  10. Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92:4796

    Article  CAS  Google Scholar 

  11. Ravi P, Venkatesan V, Tewari SP, Sikder AK (2010) J Hazard Mate 183:859

    Article  CAS  Google Scholar 

  12. Lide, D.R. CRC Hand Book of Chemsitry and Physics, 84th Ed., CRC Press, 2003–2004.

  13. Materials Studio 4.1, Accelrys Inc, San Diego, CA, 2004.

  14. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) Mol Phys 107:2095

    Article  CAS  Google Scholar 

  15. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23

    Article  CAS  Google Scholar 

  16. Akhavan J (1998) Chemistry of explosives. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  17. Fukui F, Yonezawa T, Shingu H (1952) J Chem Phys 20:722

    Article  CAS  Google Scholar 

  18. Zhou Z, Parr RG (1990) J Am Chem Soc 112:5720

    Article  CAS  Google Scholar 

  19. Bader RFW (1994) Atoms in molecules. Clarendon, Oxford

    Google Scholar 

  20. Hess BA Jr, Schaad LJ (1971) J Am Chem Soc 93:2413

    Article  CAS  Google Scholar 

  21. Murray JS, Sen KD (1996) Molecular electrostatic potentials: concepts and applications. Elsevier, Amstardam

    Google Scholar 

  22. Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92:4796

    Article  CAS  Google Scholar 

  23. Cho SG, Goh EM, Kim JK (2001) Bull Korean Chem Soc 22:775

    CAS  Google Scholar 

  24. Kim CK, Cho SG, Kim CK, Park HY, Zhang H, Lee HW (2008) J Comput Chem 29:1818

    Article  CAS  Google Scholar 

  25. Belsky VK, Zorkii PM (1977) Acta Cryst A 13:1004

    Article  Google Scholar 

  26. Mathieu J, Stucki H (2004) Chimia 58:383

    Article  CAS  Google Scholar 

  27. Hoffman DM (2003) Prop Explos Pyrotech 28:194

    Article  CAS  Google Scholar 

  28. Eaton PE, Gilardi R, Zhang MX (2000) Adv Mat 12:1143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the support provided by the Defense Research Development Organization, India through Advanced Centre of Research in High Energy Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, P., Venkatesan, V. & Tewari, S.P. Theoretical studies on the structure, thermochemical and detonation properties of amino and nitroso substituted 1,2,4-triazol-5-one-N-oxides. J Mol Model 19, 4741–4751 (2013). https://doi.org/10.1007/s00894-013-1966-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1966-x

Keywords

Navigation