Skip to main content
Log in

Electronic, magnetic and optical properties of Cu, Ag, Au-doped Si clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural, optical and magnetic properties of Cu, Ag, Au-doped Si7 Clusters have been systematically investigated using density functional theory calculations. The global optimized structures of Cu, Ag, Au-doped Si clusters are predicted to have a lower HOMO–LUMO gap and higher magnetic moment. M-doping (M = Cu, Ag, Au) in Si cluster widens a range of adsorption wavelength, especially Au-doping. The characteristics in electronic density of states (DOSs) show that C5v-Si6Cu has a big asymmetrical spin-up and spin-down. The average atomic moment is 0.428 mμB per atom for the Si6Cu cluster with C5v symmetry, while the average paramagnetic moment is 0.143 mμB per atom for other M-doped (M = Cu, Ag, Au) Si7 clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nigam S, Majumder C, Kulshreshtha SK (2006) J Chem Phys 125:074303

    Article  Google Scholar 

  2. Majumder C, Kulshreshtha SK (2004) Phys Rev B 69:115432

    Article  Google Scholar 

  3. Chuang FC, Hsieh YY, Hsu CC, Albao MA (2007) J Chem Phys 127:144313

    Article  Google Scholar 

  4. Ma L, Zhao JJ, Wang JG, Wang BL, Lu QL, Wang GH (2006) Phys Rev B 73:125439

    Article  Google Scholar 

  5. Wang JG, Zhao JJ, Ma L, Wang BL, Wang GH (2007) Phys Lett A 367:335

    Article  CAS  Google Scholar 

  6. Han JG, Hagelberg F (2001) Chem Phys 263:255

    Article  CAS  Google Scholar 

  7. Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) J Am Chem Soc 127:4998

    Article  CAS  Google Scholar 

  8. Ho KM, Shvartsburg AA, Pan B, Lu ZY, Wang CZ, Wacker JG, Fye JL, Brown WL (1998) Nature 392:582

    Article  CAS  Google Scholar 

  9. Shvartsburg AA, Liu B, Lu ZY, Wang CZ, Jarrold MF, Ho KM (1999) Phys Rev Lett 83:2167

    Article  CAS  Google Scholar 

  10. Zdetsis AD (2007) J Chem Phys 127:014314

    Article  Google Scholar 

  11. Lan YZ (2012) Chem Phys Lett 545:95

    Article  CAS  Google Scholar 

  12. Alivisatos AP (1996) Science 271:933

    Article  CAS  Google Scholar 

  13. Don Dasitha Gunaratne K, Berkdemir C, Harmon CL, Castleman AW (2013) Phys Chem Chem Phys 15:6068

    Article  Google Scholar 

  14. Lin CS, Cheng WD, Wang JY, Zhang RQ (2011) Chem Phys Lett 509:124

    Article  CAS  Google Scholar 

  15. Zhao RN, Han JG, Bai JT, Liu FY, Sheng LS (2010) Chem Phys 372:89

    Article  CAS  Google Scholar 

  16. Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) J Chem Phys A 111:42

    Article  CAS  Google Scholar 

  17. Kumar V, Briere TM, Kawazoe Y (2003) Phys Rev B 68:55412

    Google Scholar 

  18. Khanna SN, Rao BK, Jena P (2002) Phys Rev Lett 89:016803

    Article  CAS  Google Scholar 

  19. Beck SM (1987) J Chem Phys 87:4233

    Article  CAS  Google Scholar 

  20. Ohara M, Koyasu K, Nakajima A, Kaya K (2003) Chem Phys Lett 371:490

    Article  CAS  Google Scholar 

  21. Guo LJ, Zhao GF, Gu YZ, Liu X, Zeng Z (2008) Phys Rev B 77:195417

    Article  Google Scholar 

  22. Reveles JU, Khanna SN (2005) Phys Rev B 72:165413

    Article  Google Scholar 

  23. Uchida N, Miyazaki T, Kanayama T (2006) Phys Rev B 74:205427

    Article  Google Scholar 

  24. Torres MB, Fernández EM, Balbás LC (2007) Phys Rev B 75:205425

    Article  Google Scholar 

  25. Koyasu K, Atobe J, Furuse S, Nakajima A (2009) J Chem Phys 129:214301

    Article  Google Scholar 

  26. He JG, Wu KH, Liu CP, Sa RJ (2009) Chen Phys Lett 483:30

    Article  CAS  Google Scholar 

  27. Hiura H, Miyazaki T, Kanayama T (2001) Phys Rev Lett 86:1733

    Article  CAS  Google Scholar 

  28. Jaeger JB, Jaeger TD, Duncan MA (2006) J Phys Chem A 110:9310

    Article  CAS  Google Scholar 

  29. Lan YZ, Feng YL (2009) Phys Rev A 79:033201

    Article  Google Scholar 

  30. Zhang PF, Han JG, Pu QR (2003) Theochem 634:25

    Article  Google Scholar 

  31. Gueorguiev GK, Pacheco JM, Stafstrom S, Hultman L (2006) Thin Solid Films 515:1192

    Article  CAS  Google Scholar 

  32. Wang J, Liu Y, Li YC (2010) Phys Lett A 374:2736

    Article  CAS  Google Scholar 

  33. Fischer SA, Madrid AB, Isborn CM, Prezhdo OV (2010) J Phys Chem Lett 1:232

    Article  CAS  Google Scholar 

  34. Fischer SA, Prezhdo OV (2011) J Phys Chem C 115:10006

    Article  CAS  Google Scholar 

  35. Xu HG, Wu MM, Zhang ZG, Yuan JY, Sun Q (2012) J Chem Phys 136:104308

    Article  Google Scholar 

  36. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  37. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  38. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  39. Delley B (2002) Phys Rev B 66:155125

    Article  Google Scholar 

  40. Gross EKU, Kohn W (1990) Adv Quantum Chem 21:255

    Article  CAS  Google Scholar 

  41. Isborn CM, Prezhdo OV (2009) J Phys Chem C 113:12617

    Article  CAS  Google Scholar 

  42. Isborn CM, Kilina SV, Li X, Prezhdo OV (2008) J Phys Chem C 112:18291

    CAS  Google Scholar 

  43. Pereiro M, Baldomir D, Arias JE (2007) Phys Rev A 75:063204

    Article  Google Scholar 

  44. Luo WD, Pennycook SJ, Pantelides ST (2007) Nano Lett 7:3134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51271148 and 50971100), the Research Fund of State Key Laboratory of Solidification Processing in China (Grant No. 30-TP-2009), and the Aeronautic Science Foundation Program of China (Grant No. 2012ZF53073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqiang Ma or Fuyi Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Chen, F. Electronic, magnetic and optical properties of Cu, Ag, Au-doped Si clusters. J Mol Model 19, 4555–4560 (2013). https://doi.org/10.1007/s00894-013-1961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1961-2

Keywords

Navigation