Skip to main content
Log in

Effects of trimethylaluminium and tetrakis(ethylmethylamino) hafnium in the early stages of the atomic-layer-deposition of aluminum oxide and hafnium oxide on hydroxylated GaN nanoclusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We calculate the interactions of two atomic layer deposition (ALD) reactants, trimethylaluminium (TMA) and tetrakis(ethylmethylamino) hafnium (TEMAH) with the hydroxylated Ga-face of GaN clusters when aluminum oxide and hafnium oxide, respectively, are being deposited. The GaN clusters are suitable as testbeds for the actual Ga-face on practical GaN nanocrystals of importance not only in electronics but for several other applications in nanotechnology. We find that TMA spontaneously interacts with hydroxylated GaN; however it does not follow the atomic layer deposition reaction path unless there is an excess in potential energy introduced in the clusters at the beginning of the optimization, for instance, using larger bond lengths of various bonds in the initial structures. TEMAH also does not interact with hydroxylated GaN, unless there is an excess in potential energy. The formation of a Ga—N(CH3)(CH2CH3) bond during the ALD of HfO2 using TEMAH as the reactant without breaking the Hf—N bond could be the key part of the mechanism behind the formation of an interface layer at the HfO2/GaN interface.

Interactions of TMA and TEMAH with hydroxylated GaN

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koudymov A, Xuhong H, Simin K, Simin G, Ali M, Yang J, Asif Khan M (2002) Low-loss high power RF switching using multifinger AlGaN/GaN MOSHFETs. IEEE Electron Device Lett 23(8):449–451

    Article  CAS  Google Scholar 

  2. Li G, Zimmermann T, Cao Y, Lain C, Xing X, Wang R, Fay P, Xing HG, Jena D (2010) Threshold voltage control in Al0.72Ga0.28N/AlN/GaN HEMTs by work-function engineering. IEEE Electron Device Lett 31(9):954–956

    Article  CAS  Google Scholar 

  3. Yong C, Yugang Z, Lau KM, Chen KJ (2006) Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: from depletion mode to enhancement mode. IEEE Trans Electron Devices 53(9):2207–2215

    Article  Google Scholar 

  4. Guha S, Paruchuri VK, Copel M, Narayanan V, Wang YY, Batson PE, Bojarczuk NA, Linder B, Doris B (2007) Examination of flatband and threshold voltage tuning of HfO[sub 2]/TiN field effect transistors by dielectric cap layers. Appl Phys Lett 90(9):092902—1–3

    Google Scholar 

  5. Chang YC, Chiu HC, Lee YJ, Huang ML, Lee KY, Hong M, Chiu YN, Kwo J, Wang YH (2007) Structural and electrical characteristics of atomic layer deposited high κ HfO2 on GaN. Appl Phys Lett 90(23):232904—1–3

    Google Scholar 

  6. Coan M, Johnson D, Woo JH, Biswas N, Misra V, Majhi P, Harris HR (2012) Work function extraction of metal gates with alternate channel materials. J Vac Sci Technol B 30(2):022202—1–5

    Google Scholar 

  7. Sivasubramani P, Park TJ, Coss BE, Lucero A, Huang J, Brennan B, Cao Y, Jena D, Xing H, Wallace RM, Kim J (2012) In-situ X-ray photoelectron spectroscopy of trimethyl aluminum and water half-cycle treatments on HF-treated and O3-oxidized GaN substrates. Phys Status Solidi RRL 6(1):22–24. doi:10.1002/pssr.201105417

    Article  CAS  Google Scholar 

  8. Chang YC, Huang ML, Chang YH, Lee YJ, Chiu HC, Kwo J, Hong M (2011) Atomic-layer-deposited Al2O3 and HfO2 on GaN: a comparative study on interfaces and electrical characteristics. Microelectron Eng 88(7):1207–1210. doi:10.1016/j.mee.2011.03.098

    Article  CAS  Google Scholar 

  9. Korbutowicz R, Prazmowska J, Wagrowski Z, Szyszka A, Taczaa M (2008) Wet thermal oxidation for GaAs, GaN and Metal/GaN device applications. In: Advanced semiconductor devices and microsystems, 2008. ASDAM 2008. International Conference on, 12–16 Oct. 2008. pp 163–166. doi:10.1109/asdam.2008.4743306

  10. Readinger ED, Wolter SD, Waltemyer DL, Delucca JM, Mohney SE, Prenitzer BI, Giannuzzi LA, Molnar RJ (1999) Wet thermal oxidation of GaN. J Elec Materi 28(3):257–260. doi:10.1007/s11664-999-0024-z

    Article  CAS  Google Scholar 

  11. Hu C-L, Li J-Q, Zhang Y-F, Hu X-L, Lu N-X, Chen Y (2006) A DFT study of O2 adsorption on periodic GaN (0001) and surfaces. Chem Phys Lett 424(4–6):273–278. doi:10.1016/j.cplett.2006.04.021

    Article  CAS  Google Scholar 

  12. Hu C-L, Chen Y, Li J-Q (2009) First-principles calculations of H2O adsorption reaction on the GaN(0001) surface. Chin J Struct Chem 28(2):240–244

    CAS  Google Scholar 

  13. Coan MR, Leon-Plata P, Seminario JM (2012) Ab initio analysis of the interactions of GaN clusters with oxygen and water. J Phys Chem C 116(22):12079–12092. doi:10.1021/jp302026n

    Article  CAS  Google Scholar 

  14. Nai-Xia L, Jun-Qian L, Yi-Jun X, Wen-Kai C, Yong-Fan Z (2004) Theoretical study of O2 adsorption on GaN surfaces. J Mol Struct (THEOCHEM) 668(1):51–55. doi:10.1016/j.theochem.2003.10.005

    Article  Google Scholar 

  15. Zywietz TK, Neugebauer J, Scheffler M (1999) The adsorption of oxygen at GaN surfaces. Appl Phys Lett 74(12):1695–1697

    Article  CAS  Google Scholar 

  16. Seminario JM, Derosa PA, Cordova LE, Bozard BH (2004) A molecular device operating at terahertz frequencies. IEEE Trans Nanotechnol 3(1):215–218

    Article  Google Scholar 

  17. Giovanni M (2002) Alloy nanoclusters in dielectric matrix. Nucl Inst Methods Phys Res B 191(1–4):323–332. doi:10.1016/s0168-583x(02)00527-x

    Google Scholar 

  18. Winter C, Kashammer J, Mittler-Neher S, Fischer RA (1998) A new pathway to GaN: deposition of GaN-clusters on functionalized thiol-SAMs on gold. Opt Mater 9(1–4):352–355. doi:10.1016/s0925-3467(97)00149-3

    Article  CAS  Google Scholar 

  19. Bungaro C, Rapcewicz K, Bernholc J (2000) Ab initio phonon dispersions of wurtzite AlN, GaN, and InN. Phys Rev B 61(10):6720–6725

    Article  CAS  Google Scholar 

  20. Nord J, Albe K, Erhart P, Nordlund K (2003) Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride. J Phys Condens Matter 15(32):5649–5662

    Article  CAS  Google Scholar 

  21. Fritsch J, Sankey OF, Schmidt KE, Page JB (1998) Ab initio calculation of the stoichiometry and structure of the (0001) surfaces of GaN and AlN. Phys Rev B 57(24):15360–15371

    Article  CAS  Google Scholar 

  22. Karch K, Wagner JM, Bechstedt F (1998) Ab initio study of structural, dielectric, and dynamical properties of GaN. Phys Rev B 57(12):7043–7049

    Article  CAS  Google Scholar 

  23. Costales A, Pandey R (2003) Density functional calculations of small anionic clusters of Group III nitrides. J Phys Chem A 107(1):191–197. doi:10.1021/jp022202i

    Article  CAS  Google Scholar 

  24. Song B, Yao C-H, P-l C (2006) Density-functional study of structural and electronic properties of GanN (n = 1-19) clusters. Phys Rev B 74(3):035306—1–8

    Google Scholar 

  25. Zhao J, Wang B, Zhou X, Chen X, Lu W (2006) Structure and electronic properties of medium-sized GanNn clusters (n = 4–12). Chem Phys Lett 422(1–3):170–173. doi:10.1016/j.cplett.2006.02.048

    Article  CAS  Google Scholar 

  26. Perez-Angel EC, Seminario JM (2011) Ab initio analysis and harmonic force fields of Gallium Nitride nanoclusters. J Phys Chem C 115(14):6467–6477. doi:10.1021/jp201004w

    Article  CAS  Google Scholar 

  27. Hua-Gen Y (2011) An optimal density functional theory method for GaN and ZnO. Chem Phys Lett 512(4–6):231–236. doi:10.1016/j.cplett.2011.07.034

    Google Scholar 

  28. Brena B, Ojamäe L (2008) Surface effects and quantum confinement in nanosized GaN clusters: theoretical predictions. J Phys Chem C 112(35):13516–13523. doi:10.1021/jp8048179

    Article  CAS  Google Scholar 

  29. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871

    Article  Google Scholar 

  30. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138

    Google Scholar 

  31. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  32. Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23(2):69–89

    Article  CAS  Google Scholar 

  33. Pople JA, Nesbet RK (1954) Self-consistent orbitals for radicals. J Chem Phys 22(3):571–572

    Article  CAS  Google Scholar 

  34. McWeeny R, Diercksen G (1968) Self-consistent perturbation theory. II. Extension to open shells. J Chem Phys 49(11):4852–4856

    Article  CAS  Google Scholar 

  35. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Erratum: atoms, molecules, solids, and surfaces - applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 48(7):4978–4978

    Article  CAS  Google Scholar 

  36. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687

    Article  CAS  Google Scholar 

  37. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54(23):16533–16539

    Article  CAS  Google Scholar 

  38. Perdew JP (1991) Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche P, Eschrig H (eds) Electronic structure of solids. Akademie Verlag, Berlin, pp 11–20

    Google Scholar 

  39. Burke K, Perdew JP, Wang Y (1998) In: Ed JF, Dobson GV, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum Press, New York

    Google Scholar 

  40. Cárdenas-Jirón GI, Leon-Plata P, Cortes-Arriagada D, Seminario JM (2011) Electrical characteristics of cobalt phthalocyanine complexes adsorbed on graphene. J Phys Chem C 115(32):16052–16062. doi:10.1021/jp2041026

    Article  Google Scholar 

  41. Liuming Y, Eddy JB, Jorge MS (2007) Ab initio analysis of electron currents through benzene, naphthalene, and anthracene nanojunctions. Nanotechnology 18(48):485701—1–8

    Google Scholar 

  42. Fu M-L, Rangel N, Adams R, Seminario J (2010) Synthesis, crystal structure, photophysical properties, and DFT calculations of a Bis(tetrathia-calix[4]arene) Tetracadmium complex. J Clust Sci 21(4):867–878. doi:10.1007/s10876-010-0347-1

    Article  CAS  Google Scholar 

  43. Seminario JM, Araujo RA, Yan L (2004) Negative differential resistance in metallic and semiconducting clusters. J Phys Chem B 108(22):6915–6918

    Article  CAS  Google Scholar 

  44. Balbuena PB, Altomare D, Agapito LA, Seminario JM (2003) Theoretical analysis of oxygen adsorption on Pt-based clusters alloyed with Co, Ni, or Cr embedded in a Pt matrix. J Phys Chem B 107(49):13671–13680

    Article  CAS  Google Scholar 

  45. Derosa PA, Seminario JM, Balbuena PB (2001) Properties of small bimetallic Ni-Cu clusters. J Phys Chem A 105(33):7917–7925

    Article  CAS  Google Scholar 

  46. Zacarias AG, Castro M, Tour JM, Seminario JM (1999) Lowest energy states of small Pd clusters using density functional theory and standard ab initio methods. A route to understanding metallic nanoprobes. J Phys Chem A 103(38):7692–7700

    Article  CAS  Google Scholar 

  47. Seminario JM, Zacarias AG, Castro M (1997) Systematic study of the lowest energy states of Pd, Pd2, and Pd3. Int J Quantum Chem 61:515–523

    Article  CAS  Google Scholar 

  48. Seminario JM, Agapito LA, Yan L, Balbuena PB (2005) Density functional theory study of adsorption of OOH on Pt-based bimetallic clusters alloyed with Cr, Co, and Ni. Chem Phys Lett 410(4–6):275–281

    Article  CAS  Google Scholar 

  49. Seminario JM, Tour JM (1997) Systematic study of the lowest energy states of Aun (n = 1-4) using DFT. Int J Quantum Chem 65:749–758

    Article  CAS  Google Scholar 

  50. Seminario JM, Ma Y, Agapito LA, Yan L, Araujo RA, Bingi S, Vadlamani NS, Chagarlamudi K, Sudarshan TS, Myrick ML, Colavita PE, Franzon PD, Nackashi DP, Cheng L, Yao Y, Tour JM (2004) Clustering effects on discontinuous gold film NanoCells. J Nanosci Nanotechnol 4(7):907–917

    Article  CAS  Google Scholar 

  51. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg. J Chem Phys 82(1):270–283

    Article  CAS  Google Scholar 

  52. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations - potentials for K to Au including the outermost core orbitals. J Chem Phys 82(1):299–310

    Article  CAS  Google Scholar 

  53. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations - potentials for main group elements Na to Bi. J Chem Phys 82(1):284–298

    Article  CAS  Google Scholar 

  54. Seminario JM, Yan L (2005) Ab initio analysis of electron currents in thioalkanes. Int J Quantum Chem 102:711–723

    Article  CAS  Google Scholar 

  55. Derosa PA, Guda S, Seminario JM (2003) A programmable molecular diode driven by charge-induced conformational changes. J Am Chem Soc 125:14240–14241

    Article  CAS  Google Scholar 

  56. Seminario JM, De La Cruz C, Derosa PA, Yan L (2004) Nanometer-size conducting and insulating molecular devices. J Phys Chem B 108(46):17879–17885

    Article  CAS  Google Scholar 

  57. Seminario JM, Yan L, Ma Y (2005) Scenarios for molecular-level signal processing. Proc IEEE 93(10):1753–1764

    Article  CAS  Google Scholar 

  58. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17(1):49–56

    Article  CAS  Google Scholar 

  59. Li X, Frisch MJ (2006) Energy-represented DIIS within a hybrid geometry optimization method. J Chem Theory Comput 2(3):835–839

    Article  CAS  Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Gaussian Inc, Wallingford

  61. Bougrov V, Levinshtein M, Rumyantsev S, Zubrilov A (2001) Gallium nitride (GaN). In: Levinshtein ME, Rumyantsev SL, Shur M (eds) Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York, pp 1–28

  62. Halls MD, Raghavachari K (2004) Atomic layer deposition growth reactions of Al2O3 on Si(100)-2 × 1. J Phys Chem B 108(13):4058–4062. doi:10.1021/jp0378079

    Article  CAS  Google Scholar 

  63. Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97(12):121301–121352

    Article  Google Scholar 

  64. Kim D-H, Baek S-B, Seo H-I, Kim Y-C (2011) Interactions between tri-methylaluminum molecules and their effect on the reaction of tri-methylaluminum with an OH-terminated Si (0 0 1) surface. Appl Surf Sci 257(15):6326–6331. doi:10.1016/j.apsusc.2011.01.032

    Article  CAS  Google Scholar 

  65. Xu Y, Musgrave CB (2004) A DFT study of the Al2O3 atomic layer deposition on SAMs: effect of SAM termination. Chem Mater 16(4):646–653. doi:10.1021/cm035009p

    Article  CAS  Google Scholar 

  66. Stierle A, Renner F, Streitel R, Dosch H, Drube W, Cowie BC (2004) X-ray diffraction study of the ultrathin Al2O3 layer on NiAl(110). Science 303(5664):1652–1656. doi:10.1126/science.1094060

    Article  CAS  Google Scholar 

  67. Ren J, Zhang Y-T, Zhang DW (2007) Density functional theory study of initial stage of HfO2 atomic layer deposition on hydroxylated SiO2 surface. J Mol Struct (THEOCHEM) 803(1–3):23–28. doi:10.1016/j.theochem.2006.09.025

    Article  CAS  Google Scholar 

  68. Robertson J, Peacock PW (2005) Atomic structure, interfaces and defects of high dielectric constant gate oxides. In: Demkov AA, Navrotsky A (eds) Materials fundamentals of gate dielectrics. Springer, Dordrecht, p 476. doi:10.1007/1-4020-3078-9_5

    Google Scholar 

Download references

Acknowledgments

We acknowledge discussions with Prof. H. Rusty Harris, we also thank the Texas A&M Supercomputer Facility, and we acknowledge financial support from the U.S. Defense Threat Reduction Agency (DTRA) through the U.S. Army Research Office, project no. W91NF-06-1-0231, and ARO/MURI project no. W911NF-11-1-0024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. Seminario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

León-Plata, P.A., Coan, M.R. & Seminario, J.M. Effects of trimethylaluminium and tetrakis(ethylmethylamino) hafnium in the early stages of the atomic-layer-deposition of aluminum oxide and hafnium oxide on hydroxylated GaN nanoclusters. J Mol Model 19, 4419–4432 (2013). https://doi.org/10.1007/s00894-013-1956-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1956-z

Keywords

Navigation