Skip to main content
Log in

Theoretical design of donor-acceptor conjugated copolymers based on furo-, thieno-, and selenopheno[3,4-c] thiophene-4,6-dione and benzodithiophene units for organic solar cells

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, a series of donor-acceptor (D-A) copolymers (PBDTFPD(Pa1), PBDTTPD (Pa2) and PBDTSePD(Pa3)) were selected and theoretically investigated using O3LYP/6-31G(d), PBE0/6-31G(d), TD-O3LYP/6-31G(d)//O3LYP/6-31G(d) and periodic boundary conditions methods. The calculated results go well with the available experimental data of highest occupied and lowest unoccupied molecular orbital (HOMO/LUMO) energy levels and band gaps. A series of conjugated polymers (Pb1 ~ Pb3) comprised of electron-deficient benzodithiophene and electron-rich furo-, thieno-, and selenopheno[3,4-c]thiophene-4,6-dione were further designed and studied. Compared with Pa1-Pa3, the designed polymers of Pb1 ~ Pb3 show better performances with smaller band gaps, lower HOMO energy levels, red shift of absorption spectra, and larger open circuit voltage (Voc). For investigated polymers (Pa1, Pa2, Pa3, Pb1, Pb2, Pb3), the power conversion efficiencies (PCEs) of ~6.1 %, ~7.2 %, ~7.9 %, ~8.0 %, ~9.5 % and ~9.0 % are predicted by Scharber diagrams when they are used in combination with PC60BM as an acceptor. The results illustrate that these designed polymers which turn the electron-withdrawing capability in D-A conjugated polymers are expected to turn into highly efficient donor materials for organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia S, Williams SP (2010) Adv Mater 22:3839

    Article  CAS  Google Scholar 

  2. Guo X, Zhou N, Lou SJ, Hennek JW, Ortiz RP, Butler MR, Boudreault PLT, Strzalka JW, Morin PO, Leclerc M (2012) J Am Chem Soc 134:18427

    Article  CAS  Google Scholar 

  3. Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Körner C, Ziehlke H, Elschner C, Leo K (2012) J Am Chem Soc 134:11064

    Article  CAS  Google Scholar 

  4. Bundgaard E, Krebs FC (2007) Sol Energy Mater Sol Cells 91:954

    Article  CAS  Google Scholar 

  5. Wang Z, Tao F, Xi L-y, Meng K-g, Zhang W, Li Y, Jiang Q (2011) J Mater Sci 46:4005

    Article  CAS  Google Scholar 

  6. Ranjith K, Swathi S, Kumar P, Ramamurthy PC (2011) J Mater Sci 46:2259

    Article  CAS  Google Scholar 

  7. Yang M, Chen X, Zou Y, Pan C, Liu B, Zhong H (2013) J Mater Sci 48:1014

    Article  CAS  Google Scholar 

  8. Jeon YJ, Yun JM, Kim DY, Na SI, Kim SS (2012) Sol Energy Mater Sol Cells 105:96

    Article  CAS  Google Scholar 

  9. Yi Y, Coropceanu V, Brédas JL (2009) J Am Chem Soc 131:15777

    Article  CAS  Google Scholar 

  10. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Science 258:1474

    Article  CAS  Google Scholar 

  11. Guldi DM, Prato M (2000) Acc Chem Res 33:695

    Article  CAS  Google Scholar 

  12. Li Y, Pullerits T, Zhao M, Sun M (2011) J Phys Chem C 115:21865

    Article  CAS  Google Scholar 

  13. Imahori H, Yamada H, Guldi DM, Endo Y, Shimomura A, Kundu S, Yamada K, Okada T, Sakata Y, Fukuzumi S (2002) Angew Chem Int Ed 41:2344

    Article  CAS  Google Scholar 

  14. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE, Oliphant CJ, Knoesen D (2009) J Mater Sci 44:3192

    Article  CAS  Google Scholar 

  15. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Nature Photonics 6:593

    Article  CAS  Google Scholar 

  16. Li Y (2012) Acc Chem Res 45:723

    Article  CAS  Google Scholar 

  17. Xiao S, Zhou H, You W (2008) Macromolecules 41:5688

    Article  CAS  Google Scholar 

  18. Zhang Y, Zou J, Cheuh C-C, Yip H-L, Jen AK-Y (2012) Macromolecules 45:5427

    Article  CAS  Google Scholar 

  19. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Adv Mater 18:789

    Article  CAS  Google Scholar 

  20. Liang Y, Yu L (2010) Acc Chem Res 43:1227

    Article  CAS  Google Scholar 

  21. Thompson BC, Fréchet JMJ (2008) Angew Chem Int Ed 47:58

    Article  CAS  Google Scholar 

  22. Bonoldi L, Calabrese A, Pellegrino A, Perin N, Po R, Spera S, Tacca A (2011) J Mater Sci 46:3960

    Article  CAS  Google Scholar 

  23. Tang S, Zhang J (2011) J Phys Chem A 115:5184

    Article  CAS  Google Scholar 

  24. Seo JH, Jin Y, Brzezinski JZ, Walker B, Nguyen TQ (2009) ChemPhysChem 10:1023

    Article  CAS  Google Scholar 

  25. Balan B, Vijayakumar C, Saeki A, Koizumi Y, Seki S (2012) Macromolecules 45:2709

    Article  CAS  Google Scholar 

  26. Li Z, Lu J, Tse SC, Zhou J, Du X, Tao Y, Ding J (2011) J Mater Chem 21:3226

    Article  CAS  Google Scholar 

  27. Xiao S, Stuart AC, Liu S, Zhou H, You W (2010) Adv Funct Mater 20:635

    Article  CAS  Google Scholar 

  28. Ku J, Lansac Y, Jang YH (2011) J Phys Chem C 115:21508

    Article  CAS  Google Scholar 

  29. Wang X, Sun Y, Chen S, Guo X, Zhang M, Li X, Li Y, Wang H (2012) Macromolecules 45:1208

    Article  CAS  Google Scholar 

  30. Pappenfus TM, Schmidt JA, Koehn RE, Alia JD (2011) Macromolecules 44:2354

    Article  CAS  Google Scholar 

  31. Zhang L, Pei K, Zhao H, Wu S, Wang Y, Gao J (2012) Chem Phys Lett 543:199

    Article  CAS  Google Scholar 

  32. Zade SS, Zamoshchik N, Bendikov M (2011) Acc Chem Res 44:14

    Article  CAS  Google Scholar 

  33. Zhang L, Pei K, Yu M, Huang Y, Zhao H, Zeng M, Wang Y, Gao J (2012) J Phys Chem C 116:26154

    Article  CAS  Google Scholar 

  34. Zade SS, Bendikov M (2006) Org Lett 8:5243

    Article  CAS  Google Scholar 

  35. Shang Y, Li Q, Meng L, Wang D, Shuai Z (2011) Theor Chem Acc 129:291

    Article  CAS  Google Scholar 

  36. Hu X, Shi M, Zuo L, Nan Y, Liu Y, Fu L, Chen H (2011) Polymer 52:2559

    Article  CAS  Google Scholar 

  37. Chu TY, Tsang SW, Zhou J, Verly PG, Lu J, Beaupre S, Leclerc M, Tao Y (2012) Sol Energy Mater Sol Cells 96:155

    Article  CAS  Google Scholar 

  38. Zhang Y, Zou J, Yip HL, Sun Y, Davies JA, Chen KS, Acton O, Jen AKY (2011) J Mater Chem 21:3895

    Article  CAS  Google Scholar 

  39. Lin Z, Bjorgaard J, Yavuz AG, Iyer A, Köse ME (2012) RSC Adv 2:642

    Article  CAS  Google Scholar 

  40. Small CE, Chen S, Subbiah J, Amb CM, Tsang SW, Lai TH, Reynolds JR, So F (2012) Nature Photonics 6:115

    Article  CAS  Google Scholar 

  41. Beaupré S, Pron A, Drouin SH, Najari A, Mercier LG, Robitaille A, Leclerc M (2012) Macromolecules 45:6906

    Article  Google Scholar 

  42. Zou Y, Najari A, Berrouard P, Beaupré S, Réda Aïch B, Tao Y, Leclerc M (2010) J Am Chem Soc 132:5330

    Article  CAS  Google Scholar 

  43. Zhang Y, Hau SK, Yip HL, Sun Y, Acton O, Jen AKY (2010) Chem Mater 22:2696

    Article  CAS  Google Scholar 

  44. Piliego C, Holcombe TW, Douglas JD, Woo CH, Beaujuge PM, Fréchet JMJ (2010) J Am Chem Soc 132:7595

    Article  CAS  Google Scholar 

  45. Yusoff ARBM, Kim HP, Jang J (2012) Org Electron 13:2379

    Article  Google Scholar 

  46. Najari A, Beaupré S, Berrouard P, Zou Y, Pouliot JR, Lepage–Pérusse C, Leclerc M (2011) Adv Funct Mater 21:718

    Article  CAS  Google Scholar 

  47. AÏch BR, Lu J, Beaupre S, Leclerc M, Tao Y (2012) Org Electron 13:1736

    Article  Google Scholar 

  48. Hoe WM, Cohen AJ, Handy NC (2001) Chem Phys Lett 341:319

    Article  CAS  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  50. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  51. Lee C, Yang W, Parr RG (1988) Phy Rev B 37:785

    Article  CAS  Google Scholar 

  52. Cohen AJ, Mori-Sánchez P, Yang W (2012) Chem Rev 112:289

    Article  CAS  Google Scholar 

  53. Tolbert LM (1992) Acc Chem Res 25:561

    Article  CAS  Google Scholar 

  54. Lu T. Multiwfn 2.1 http://multiwfn.codeplex.com/

  55. Lin BC, Cheng CP, Lao ZPM (2003) J Phys Chem A 107:5241

    Article  CAS  Google Scholar 

  56. Lan YK, Yang CH, Yang HC (2010) Polym Int 59:16

    Article  CAS  Google Scholar 

  57. Yang X, Wang L, Wang C, Long W, Shuai Z (2008) Chem Mater 20:3205

    Article  CAS  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo JR, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski RL, Martin K, Morokuma VG, Zakrzewski GA, Voth P, Salvador JJ, Dannenberg S, Dapprich AD, Daniels O, Farkas JB, Foresman JV, Ortiz J, Cioslowski Fox DJ (2009) Gaussian 09, revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  59. Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M (2008) J Am Chem Soc 130:732

    Article  CAS  Google Scholar 

  60. De Leeuw D, Simenon M, Brown A, Einerhand R (1997) Synth Met 87:53

    Article  Google Scholar 

  61. Yang XW, Wang L, Wang C, Long W, Shuai Z (2008) Chem Mater 20:3205

    Article  CAS  Google Scholar 

  62. Yang X, Li Q, Shuai Z (2007) Nanotechnology 18:424029

    Article  Google Scholar 

  63. Wang C, Wang F, Yang X, Li Q, Shuai Z (2008) Org Electron 9:635

    Article  CAS  Google Scholar 

  64. Marcus RA (1993) Angew Chem Int Ed 32:1111

    Article  Google Scholar 

  65. Deng WQ, Goddard WA III (2004) J Phys Chem B 108:8614

    Article  CAS  Google Scholar 

  66. Coropceanu V, Cornil J, da Silva D, Olivier Y, Silbey R, Bredas J (2007) Chem Rev 107:926

    Article  CAS  Google Scholar 

  67. Kuo MY, Chen HY, Chao I (2007) Chem-Eur J 13:4750

    Article  CAS  Google Scholar 

  68. Wang L, Nan G, Yang X, Peng Q, Li Q, Shuai Z (2010) Chem Soc Rev 39:423

    Article  CAS  Google Scholar 

  69. Marcus RA (1964) Annu Rev Phys Chem 15:155

    Article  CAS  Google Scholar 

  70. Koopmans T (1934) Physica 1:104

    Article  Google Scholar 

  71. Liu H, Kang S, Lee JY (2011) J Phys Chem B 115:5113

    Article  CAS  Google Scholar 

  72. Lan YK, Huang CI (2008) J Phys Chem B 112:14857

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No.21073144), and by Fundamental Research Funds for the Central Universities (Grant No. XDJK2010B009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., He, R., Shen, W. et al. Theoretical design of donor-acceptor conjugated copolymers based on furo-, thieno-, and selenopheno[3,4-c] thiophene-4,6-dione and benzodithiophene units for organic solar cells. J Mol Model 19, 4283–4291 (2013). https://doi.org/10.1007/s00894-013-1939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1939-0

Keywords

Navigation