Skip to main content
Log in

Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A systematic investigation of the thermal conductivity of zigzag graphene nanoribbons (ZGNRs) doped with nitrogen and containing a vacancy defect was performed using reverse nonequilibrium molecular dynamics (RNEMD). The investigation showed that the thermal conductivity of the ZGNRs was significantly reduced by nitrogen doping. The thermal conductivity dropped rapidly when the nitrogen doping concentration was low. Also, the presence of a vacancy defect was found to significantly decrease the thermal conductivity. Initially, as the vacancy moved from the heat sink to the heat source, the phonon frequency and the phonon energy increased, and the thermal conductivity decreased. When the distance between the vacancy in the ZGNR and the edge of the heat sink reached 2.214 nm, tunneling began to occur, allowing high-frequency phonons to pass through the vacancies and transfer some energy. The curve of the thermal conductivity of the ZGNRs versus the vacancy position was found to be pan-shaped, with the thermal conductivity of the ZGNRs controlled by the phonon. These findings could be useful when attempting to control heat transfer on the nanoscale using GNR-based thermal devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–e
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK (2004) Science 306:666

    Article  CAS  Google Scholar 

  2. Berger C, Song Z, Li X, Wu X, Brown N (2006) Science 312:1191

    Article  CAS  Google Scholar 

  3. Ghosh S, Callizo L (2008) Appl Phys Lett 92:151911

    Article  Google Scholar 

  4. Guo Z, Dier Z, Xin-Gao G (2009) Appl Phys Lett 95:163103

    Article  Google Scholar 

  5. Chien S-K, Yue-Tzu Y, Chaó-Kuang C (2011) Appl Phys Lett 98:033107

    Article  Google Scholar 

  6. Shao Y, Sheng Z, Mark HE (2010) J Mater Chem 20:7491

    Google Scholar 

  7. Dacheng W, Yunqi L, Yu W (2009) Nano Lett 5:1752

    Google Scholar 

  8. Xinran W (2009) Science 324:768

    Article  Google Scholar 

  9. Ying W, Yuyan S (2010) ACS Nano 4:1790

    Article  Google Scholar 

  10. Florian Muller-Plathe J (1997) Chem Phys 106:6082

    Google Scholar 

  11. Ning W, Langqing X, Hui-Qiong W (2011) Nanotechnology 22:105705

    Article  Google Scholar 

  12. Jiuning H, Xiulin R, Chen YP (2009) Nano Lett 7:2730

    Google Scholar 

  13. Luks JR, Zhong H (2007) J Heat Transfer 129:705

    Article  Google Scholar 

  14. Jiang J-W, Lan J, Jian-Sheng W (2010) J Appl Phys 107:054314

    Article  Google Scholar 

  15. Donald WB, Olga AS (2002) J Phys Condens Matter 14:783

    Article  Google Scholar 

  16. Tersoff J (1989) Phys Rev B 39:5566

    Google Scholar 

  17. Katsuyuki M, Craig F (2000) J Appl Phys 38:L48

    Google Scholar 

  18. Nika DL, Pokatilov EP (2009) Phys Rev B 79:155413

    Google Scholar 

  19. Hu J, Stephen S, Ajiit V, Xiulin R (2010) Appl Phys Lett 97:133107

    Article  Google Scholar 

  20. Yang N, Nianbei L, Lei W (2007) Phys Rev B 76:020301

    Google Scholar 

  21. Abramson AR, Tien C-L, A. Majumdar (2002) ASME J Heat Transfer 124:963

    Google Scholar 

  22. Chien S-K, Yue-Tzu Y, Cháo-Kuang (2010) Phys Lett A 374:4885

    Article  CAS  Google Scholar 

  23. Chen J, Zhang G, Li B (2009) Appl Phys Lett 95:073117

    Article  Google Scholar 

  24. Baowen L, Lan J, Wang L (2005) Phys Rev Lett 95:104302

    Article  Google Scholar 

  25. Yang P, Li X, Yang H, Wang X, Tang Y, Yuan X (2013) Appl Phys Mater Sci Process. doi:10.1007/s00339-013-7607-5

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the National Natural Science Foundation of China (61076098, 51275182), the support of the Jiangsu Province Science Foundation for Youths, the Innovative Science Foundation for Graduate Students of Jiangsu Province (CXZZ13_0655, CXLX12_0622), and the Special Natural Science Foundation for the Innovative Group of Jiangsu University during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Yang or Shuting Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Tang, Y., Gong, J. et al. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons. J Mol Model 19, 4781–4788 (2013). https://doi.org/10.1007/s00894-013-1937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1937-2

Keywords

Navigation