Skip to main content

Advertisement

Log in

Spin-flip reactions of Zr + C2H6 researched by relativistic density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) with relativistic corrections of zero-order regular approximation (ZORA) has been applied to explore the reaction mechanisms of ethane dehydrogenation by Zr atom with triplet and singlet spin-states. Among the complicated minimum energy reaction path, the available states involves three transition states (TS), and four stationary states (1) to (4) and one intersystem crossing with spin-flip (marked by ⇒): 3Zr + C 2 H 6 3Zr-CH 3 -CH 3 (3 1) → 3 TS 1/2 3ZrH-CH 2 -CH 3 (3 2) → 3 TS 2/3 1ZrH2-CH2 = CH2 (1 3) → 1 TS 3/4 1ZrH 3 -CH = CH 2 (1 4). The minimum energy crossing point is determined with the help of the DFT fractional-occupation-number (FON) approach. The spin inversion leads the reaction pathway transferring from the triplet potential energy surface (PES) to the singlet’s accompanying with the activation of the second C-H bond. The overall reaction is calculated to be exothermic by about 231 kJ mol−1. Frequency and NBO analysis are also applied to confirm with the experimental observed data.

Reaction \( {}^{\mathbf{3}}\mathrm{Zr}+{\mathrm{C}}_{\mathbf{2}}{\mathrm{H}}_{\mathbf{6}}{\to}^{\mathbf{3}}\mathrm{Zr}\mathrm{H}-{\mathrm{C}\mathrm{H}}_{\mathbf{2}}-{\mathrm{C}\mathrm{H}}_{\mathbf{3}}{\Rightarrow}^{\mathbf{1}}{\mathrm{ZrH}}_2-{\mathrm{C}\mathrm{H}}_2={\mathrm{C}\mathrm{H}}_2{\to}^{\mathbf{1}}{\mathrm{ZrH}}_{\mathbf{3}}-\mathrm{CH}={\mathrm{C}\mathrm{H}}_{\mathbf{2}} \)proceeds via spin-flip surface hopping over several transition states has been investigated. The minimum energy crossing point is determined with the help of the DFT fractional-occupation-number (FON) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoshizawa K, Suzuki A, Yamabe T (1999) J Am Chem Soc 121:5266–5273

    Article  CAS  Google Scholar 

  2. Bowers MT (1994) Acc Chem Res 27:324–332

    Article  CAS  Google Scholar 

  3. Cho HG, Andrews L (2008) J Am Chem Soc 130:15836–15841

    Article  CAS  Google Scholar 

  4. Arndtsen BA, Bergman RG, Mobley A, Peterson TH (1995) Acc Chem Res 28:154–162

    Article  CAS  Google Scholar 

  5. Cho HG, Andrews L (2005) Angew Chem Int Ed 44:113–116

    Article  Google Scholar 

  6. Roithova J, Schröder D (2010) Chem Rev 110:1170–1211

    Article  CAS  Google Scholar 

  7. Eller K, Schwarz H (1991) Chem Rev 91:1121–1177

    Article  CAS  Google Scholar 

  8. Armentrout PB (2001) Annu Rev Phys Chem 52:423–461

    Article  CAS  Google Scholar 

  9. Irikura KK, Goddard WA (1994) J Am Chem Soc 116:8733–8740

    Article  CAS  Google Scholar 

  10. Liu G, Zhao Y, Zhang W, Zhang X (2008) J Mol Struct (THEOCHEM) 869:75–80

    Article  CAS  Google Scholar 

  11. Lv LL, Wang YC, Wang Q, Liu HW (2010) J Phys Chem C 114:17610–17620

    Article  CAS  Google Scholar 

  12. Guo Z, Ke Z, Phillips DL, Zhao C (2008) Organometallics 27:181–188

    Article  CAS  Google Scholar 

  13. Fedorov DG, Gordon MS (2000) J Chem Phys 112:10247–10258

    Article  Google Scholar 

  14. Sievers MR, Armentrout PB (2003) Organometallics 22:2599–2611

    Article  CAS  Google Scholar 

  15. Cho HG, Lyon JT, Andrews L (2008) J Phys Chem A 112:6902–6907

    Article  CAS  Google Scholar 

  16. Cho HG, Andrews L (2006) Organometallics 25:4040–4053

    Article  Google Scholar 

  17. Cho HG, Andrews L (2011) Dalton Trans 40:11115–11124

    Article  CAS  Google Scholar 

  18. Cho HG, Andrews L (2011) Organometallics 30:477–486

    Article  CAS  Google Scholar 

  19. Cho HG, Andrews L (2009) Organometallics 28:1358–1368

    Article  CAS  Google Scholar 

  20. Cho HG, Andrews L (2009) Dalton Trans 30:5858–5866

    Article  Google Scholar 

  21. Cho HG, Andrews L (2008) Organometallics 27:1786–1796

    Article  CAS  Google Scholar 

  22. Cho HG, Lyon JT, Andrews L (2008) Organometallics 27:5241–5251

    Article  CAS  Google Scholar 

  23. Cho HG, Andrews L, Vlaisavljevich B, Gagliardi L (2009) Organometallics 28:6871–6879

    Article  CAS  Google Scholar 

  24. Cho HG, Andrews L, Vlaisavljevich B, Gagliardi L (2009) Organometallics 28:5623–5632

    Article  CAS  Google Scholar 

  25. Cho HG, Andrews L (2010) Dalton Trans 39:5478–5489

    Article  CAS  Google Scholar 

  26. Cho HG, Andrews L (2008) J Phys Chem A 112:1519–1525

    Article  CAS  Google Scholar 

  27. Cho HG, Andrews L (2008) Eur J Inorg Chem. 2537–2549

  28. Cho HG, Andrews L (2010) Organometallics 29:2211–2222

    Article  CAS  Google Scholar 

  29. Cho HG, Andrews L (2008) Inorg Chim Acta 361:551–559

    Article  CAS  Google Scholar 

  30. Cho HG, Andrews L (2010) J Phys Chem A 114:8056–8068

    Article  CAS  Google Scholar 

  31. Cho HG, Andrews L (2004) J Phys Chem A 108:6294–6301

    Article  CAS  Google Scholar 

  32. Cho HG, Andrews L (2004) Organometallics 23:4357–4361

    Article  CAS  Google Scholar 

  33. Cho HG, Andrews L (2004) Inorg Chem 44:979–988

    Article  Google Scholar 

  34. Cho HG, Andrews L (2004) J Am Chem Soc 126:10485–10492

    Article  CAS  Google Scholar 

  35. Cho HG, Andrews L (2008) Inorg Chem 47:1653–1662

    Article  CAS  Google Scholar 

  36. Koszinowski K, Schröder D, Schwarz H (2003) J Phys Chem A 107:4999–5006

    Article  CAS  Google Scholar 

  37. Plattner DA (1999) Angew Chem Int Ed 38:82–86

    Article  CAS  Google Scholar 

  38. Yarkony DR (1996) J Chem Phys 100:18612–18628

    Article  CAS  Google Scholar 

  39. Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  Google Scholar 

  40. Harvey JN, Poli R, Smith KM (2003) Coord Chem Rev 238:347–361

    Article  Google Scholar 

  41. Gutlich P, Garcia Y, Goodwin HA (2000) Chem Soc Rev 29:419–427

    Article  CAS  Google Scholar 

  42. Poli R, Harvey JN (2003) Chem Soc Rev 32:1–8

    Article  CAS  Google Scholar 

  43. Gutlich P, Garcia Y, Woike T (2000) Coord Chem Rev 219:839–879

    Google Scholar 

  44. Poli R (2004) J Organomet Chem 689:4291–4304

    Article  CAS  Google Scholar 

  45. Neese F, Petrenko T, Ganyushin D, Olbrich G (2007) Coord Chem Rev 251:288–327

    Article  CAS  Google Scholar 

  46. Fedorov DG, Koseki S, Michael W, Gordon MS (2003) Int Rev Phys Chem 22:551–592

    Article  CAS  Google Scholar 

  47. Chachiyo T, Rodriguez JH (2005) J Chem Phys 123:094711–094720

    Article  Google Scholar 

  48. Jensen F (2003) J Chem Phys 119:8804–8808

    Article  CAS  Google Scholar 

  49. Barbatti M, Ruckenbauer M, Lischka H (2005) J Chem Phys 122:174307–174316

    Article  CAS  Google Scholar 

  50. Cui Q, Morokuma K (1997) Chem Phys Lett 272:319–327

    Article  CAS  Google Scholar 

  51. Schoeneboom J, Thiel W (2004) J Am Chem Soc 126:4017–4034

    Article  CAS  Google Scholar 

  52. Jensen F (1992) J Am Chem Soc 114:1596–1603

    Article  CAS  Google Scholar 

  53. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99–112

    Article  CAS  Google Scholar 

  54. Guo Z, Ke Z, Phillips DL, Zhao C (2007) Organometallics 27:181–188

    Article  Google Scholar 

  55. Øiestad EL, Harvey JN, Uggerud E (2000) J Phys Chem A 104:8382–8388

    Article  Google Scholar 

  56. Koga N, Morokuma K (1985) Chem Phys Lett 119:371–374

    Article  CAS  Google Scholar 

  57. Wang SG, Chen XY, Schwarz WHE (2007) J Chem Phys 126:124109–124117

    Article  Google Scholar 

  58. Li J, Chen XY, Qiu YX, Wang SG (2009) J Phys Chem A 113:8471–8477

    Article  CAS  Google Scholar 

  59. Li Q, Qiu YX, Chen XY, Schwarz WHE, Wang SG (2012) Phys Chem Chem Phys 14:6833–6841

    Article  CAS  Google Scholar 

  60. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41–51

    Article  CAS  Google Scholar 

  61. Velde G, Baerends EJ (1992) J Comput Phys 99:84–98

    Article  Google Scholar 

  62. Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta 43:261–271

    Article  CAS  Google Scholar 

  63. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  64. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  65. Rosen A, Lindgren I (1968) Phys Rev 176:114–125

    Article  Google Scholar 

  66. Lenthe EV, Baerends EJ (2003) J Comput Chem 24:1142–1156

    Article  Google Scholar 

  67. Lenthe EV, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9793

    Article  Google Scholar 

  68. Deng L, Ziegler T (1994) Int J Quant Chem 52:731–765

    Article  CAS  Google Scholar 

  69. Deng L, Ziegler T, Fan L (1993) J Chem Phys 99:3823–3836

    Article  CAS  Google Scholar 

  70. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  71. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  72. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  73. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–732

    Article  CAS  Google Scholar 

  74. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B3. Gaussian Inc, Pittsburgh

    Google Scholar 

  75. Baerends EJ, Branchadell V, Sodupe M (1997) Chem Phys Lett 265:481–489

    Article  CAS  Google Scholar 

  76. NIST Chemistry Webbook, NIST Standard Reference Data Base Number 69, http://physics.nist.gov/PhysRefDate/Handbook/Tables/rheniumtable5.htm

  77. Si Y, Zhang W, Zhao Y (2012) J Phys Chem A 116:2583–2590

    Article  CAS  Google Scholar 

  78. Li FX, Zhang XG, Armentrout PB (2006) Int J Mass Spectrom 255:279–300

    Google Scholar 

  79. Sändig N, Koch W (1997) Organometallics 16:5244–5251

    Article  Google Scholar 

  80. Russo N, Sicilia E (2001) J Am Chem Soc 123:2588–2596

    Article  CAS  Google Scholar 

  81. Janak JF (1978) Phys Rev B 18:7165–7173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by the National Nature Science Foundation of China (No. 20973109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Guang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Chen, XY., Qiu, YX. et al. Spin-flip reactions of Zr + C2H6 researched by relativistic density functional theory. J Mol Model 19, 4003–4012 (2013). https://doi.org/10.1007/s00894-013-1932-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1932-7

Keywords

Navigation