Skip to main content
Log in

Molecular dynamics study of Na+ transportation in a cyclic peptide nanotube and its influences on water behaviors in the tube

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The dynamics of Na+ transportation in a transmembrane cyclic peptide nanotube of 8 × (WL)4/POPE has been simulated. The curve of PMF (potential of mean force) for Na+ moving through the tube, based on ABF (adaptive biasing force) method, indicates that Na+ possesses lower free energy in an α-plane region than in a mid-plane one. It was found that Na+ would desorb one or two water molecules in the first solvation shell when entering the tube and later maintain in a solvation state. The average numbers of water molecules around Na+ are 4.50, 4.09 in the first solvation shell, and 3.10, 4.08 in the second one for Na+ locating in an α-plane zone and a mid-plane region, respectively. However, water molecules far away from Na+ location still nearly arrange in a form of 1-2-1-2 file. The dipole orientations of water molecules in the regions of gaps 1 and 7 display “D-defects”, resulted from the simultaneous electrostatic potentials generated by Na+ and the bare carbonyls at the tube mouths. Such “D-defects” accommodate the energetically favorable water orientations thereby.

The PMF profile of Na+ transportation in an octa-CPNT and D-defects emerging in the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327

    Article  CAS  Google Scholar 

  2. Kim HS, Hartgerink JD, Reza Ghadiri M (1998) Oriented self-assembly of cyclic peptide nanotubes in lipid membranes. J Am Chem Soc 120:4417–4424

    Article  CAS  Google Scholar 

  3. Hwang H, Schatz GC, Ratner MA (2009) Coarse-Grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer. J Phys Chem A 113:4780–4787

    Article  CAS  Google Scholar 

  4. Khalfa A, Treptow W, Maigret B, Tarek M (2009) Self assembly of peptides near or within membranes using coarse grained MD simulations. Chem Phys 358:161–170

    Article  CAS  Google Scholar 

  5. Khurana E, DeVane RH, Kohlmeyer A, Klein ML (2008) Probing peptide nanotube self-assembly at a liquid-liquid interface with coarse-grained molecular dynamics. Nano Lett 8:3626–3630

    Article  CAS  Google Scholar 

  6. Delemotte L, Dehez F, Treptow W, Tarek M (2008) Modeling membranes under a transmembrane potential. J Phys Chem B 112:5547–5550

    Article  CAS  Google Scholar 

  7. Ghadiri MR, Granja JR, Buehler LK (1994) Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369:301–304

    Article  CAS  Google Scholar 

  8. Jishi RA, Braier NC, White CT, Mintmire JW (1998) Peptide nanotubes: an inert environment. Phys Rev B 58:R16009–R16011

    Article  CAS  Google Scholar 

  9. Liu J, Fan JF, Tang M, Cen M, Yan JF, Liu Z, Zhou WQ (2010) Water diffusion behaviors and transportation properties in transmembrane cyclic Hexa-, Octa- and decapeptide nanotubes. J Phys Chem B 114:12183–12192

    Article  CAS  Google Scholar 

  10. Baumgaertner A (2009) Fast-ion transport in peptide nanochannels. Mat Sci Eng B 165:261–265

    Article  CAS  Google Scholar 

  11. Liu J, Fan JF, Tang M, Zhou WQ (2010) Molecular dynamics simulation for the structure of the water chain in a transmembrane peptide nanotube. J Phys Chem A 114:2376–2383

    Article  CAS  Google Scholar 

  12. Granja JR, Ghadiri MR (1994) Channel-mediated transport of glucose across lipid bilayers. J Am Chem Soc 116:10785–10786

    Article  CAS  Google Scholar 

  13. Liu HF, Chen J, Shen Q, Fu W, Wu W (2010) Molecular insights on the cyclic peptide nanotube-mediated transportation of antitumor drug 5-Fluorouracil. Mol Pharm 7:1985–1994

    Article  CAS  Google Scholar 

  14. Engels M, Bashford D, Reza Ghadiri M (1995) Structure and dynamics of self-assembling peptide nanotubes and the channel-mediated water organization and self-diffusion: a molecular dynamics study. J Am Chem Soc 117:9151–9158

    Article  CAS  Google Scholar 

  15. Tarek M, Maigret B, Chipot C (2003) Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers. Biophys J 85:2287–2298

    Article  CAS  Google Scholar 

  16. García-Fandiño R, Granja JR, D’Abramo M, Orozco M (2009) Theoretical characterization of the dynamical behavior and transport properties of α, γ-peptide nanotubes in solution. J Am Chem Soc 131:15678–15686

    Article  Google Scholar 

  17. Asthagiri D, Bashford D (2002) Continuum and atomistic modeling of ion partitioning into a peptide nanotube. Biophys J 82:1176–1189

    Article  CAS  Google Scholar 

  18. Hwang H, Schatz GC, Ratner MA (2006) Steered molecular dynamics studies of the potential of mean force of a Na+ or K+ ion in a cyclic peptide nanotube. J Phys Chem B 110:26448–26460

    Article  CAS  Google Scholar 

  19. Dehez F, Tarek M, Chipot C (2007) Energetics of ion transport in a peptide nanotube. J Phys Chem B 111:10633–10635

    Article  CAS  Google Scholar 

  20. Choi K-M, Kwon CH, Kim HL, Hwang H (2012) Potential of mean force calculations for ion selectivity in a cyclic peptide nanotube. B Kor Chem Soc 33:911–916

    Article  CAS  Google Scholar 

  21. Hilder TA, Gordon D, Chung S-H (2009) Boron nitride nanotubes selectively permeable to catons or anions. Small 5:2870–2875

    Article  CAS  Google Scholar 

  22. Yang Y, Berrondo M, Henderson D, Busath D (2004) The importance of water molecules in ion channel simulations. J Phys-Condens Mat 16:S2145–S2148

    Article  CAS  Google Scholar 

  23. Furini S, Beckstein O, Domene C (2009) Permeation of water through the KcsA K+ channel. Proteins 74:437–448

    Article  CAS  Google Scholar 

  24. Saparov SM, Pohl P (2004) Beyond the diffusion limit: water flow through the empty bacterial potassium channel. P Natl Acad Sci USA 101:480–4809

    Article  Google Scholar 

  25. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  27. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  28. York DM, Darden TA, Pedersen LG (1993) The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J Chem Phys 99:8345–8348

    Article  CAS  Google Scholar 

  29. Philips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  Google Scholar 

  30. Humphrey W, Dalke A, Schulten KJ (1996) VMD: visual molecular dynamics. Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  31. Bolhuis PG, Dellago C, Chandler D (2000) Reaction coordinates of biomolecular. P Natl Acad Sci USA 97:5877–5882

    Article  CAS  Google Scholar 

  32. Cohen J, Schulten K (2004) Mechanism of anionic conduction across CIC. Biophys J 86:836–845

    Article  CAS  Google Scholar 

  33. Sotomayor M, Schulten K (2007) Single-molecule experiments in vitro and in silico. Sience 316:1144–1148

    Article  CAS  Google Scholar 

  34. Lee SH, Rasaiah JC (1996) Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25 °C. J Phys Chem 100:1420–1425

    Article  CAS  Google Scholar 

  35. Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynsk’s equality. J Chem Phys 119:3559–3566

    Article  CAS  Google Scholar 

  36. Okamoto H, Nakanishi T, Nagai Y, Kasahara M, Takeda K (2003) Variety of the molecular conformation in peptide nanorings and nanotubes. J Am Chem Soc 125:2756–2769

    Article  CAS  Google Scholar 

  37. Obst S, Bradaczek H (1996) Molecular dynamics study of the structure and dynamics of the hydration shell of alkaline and alkaline-earth metal cations. J Phys Chem 100:15677–15687

    Article  CAS  Google Scholar 

  38. Chang TM, Dang LX (1999) Detailed study of potassium solvaiton using molecular dynamics techniques. J Phys Chem B 103:4714–4720

    Article  CAS  Google Scholar 

  39. Zhu FQ, Schulten K (2003) Water and proton conduction through carbon nanotubes as models for biological channels. Biophys J 85:236–244

    Article  CAS  Google Scholar 

  40. Dellago C, Naor M, Hummer G (2003) Proton transport through water-filled carbon nanotubes. Phys Rev Lett 90:105902, 1−4

    Article  Google Scholar 

  41. Zimmerli U, Gonnet PG, Walther JH, Koumoutsakos (2005) Curvature induced L-defects in water conduction in carbon nanotubes. Nano Lett 5:1017–1022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant No. 21173154) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors are sincerely thankful to Mr. Jian Liu from Shanghai Institute of Applied Physics, Chinese Academy of Sciences for his insightful suggestions, and indebted to Mr. Zhao Liu and Dr. Jianfeng Yan, School of computer Science & Technology of Soochow University for providing generous amounts of computer facilities assignment on High-performance computing cluster system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfen Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Fan, J., Liu, D. et al. Molecular dynamics study of Na+ transportation in a cyclic peptide nanotube and its influences on water behaviors in the tube. J Mol Model 19, 4271–4282 (2013). https://doi.org/10.1007/s00894-013-1899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1899-4

Keywords

Navigation