Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 9, pp 3733–3740 | Cite as

DFT studies of acrolein molecule adsorption on pristine and Al- doped graphenes

  • Somayeh F. Rastegar
  • Nasser L. Hadipour
  • Mohammad Bigdeli Tabar
  • Hamed Soleymanabadi
Original Paper

Abstract

The ability of pristine graphene (PG) and Al-doped graphene (AlG) to detect toxic acrolein (C3H4O) was investigated by using density functional calculations. It was found that C3H4O molecule can be adsorbed on the PG and AlG with adsorption energies about −50.43 and – v30.92 kcal mol−1 corresponding to the most stable configurations, respectively. Despite the fact that interaction of C3H4O has no obvious effects on the of electronic properties of PG, the interaction between C3H4O and AlG can induce significant changes in the HOMO/LUMO energy gap of the sheet, altering its electrical conductivity which is beneficial to sensor designing. Thus, the AlG may be sensitive in the presence of C3H4O molecule and might be used in its sensor devices. Also, applying an external electric filed in an appropriate orientation (almost stronger than 0.01 a.u.) can energetically facilitate the adsorption of C3H4O molecule on the AlG.

Keywords

Acrolein Al-Doped graphene DFT Graphene Sensor 

References

  1. 1.
    Martínez I, Ordóñez A, Guerrero J, Pedersen S, Miñano A, Teruel R, Velázquez L, Kristensen SR, Vicente V, Corral J (2009) Effects of acrolein, a natural occurring aldehyde, on the anticoagulant serpin antithrombin. FEBS Lett 583(19):3165–3170CrossRefGoogle Scholar
  2. 2.
    Roy J, Pallepati P, Bettaieb A, Tanel A, Averill-Bates DA (2009) Acrolein induces a cellular stress response and triggers mitochondrial apoptosis in A549 cells. Chem Biol Interact 181(2):154–167CrossRefGoogle Scholar
  3. 3.
    Sithu SD, Srivastava S, Siddiqui MA, Vladykovskaya E, Riggs DW, Conklin DJ, Haberzettl P, O’Toole TE, Bhatnagar A, D’Souza SE (2010) Exposure to acrolein by inhalation causes platelet activation. Toxicol Appl Pharmacol 248(2):100–110CrossRefGoogle Scholar
  4. 4.
    Sun Y, Chen L, Zhang F, Li D, Pan H, Ye J (2010) First-principles studies of HF molecule adsorption on intrinsic graphene and Al-doped graphene. Solid State Commun 150(39):1906–1910CrossRefGoogle Scholar
  5. 5.
    Christofides C, Mandelis A (1990) Solid–state sensors for trace hydrogen gas detection. J Appl Phys 68(6):R1–R30CrossRefGoogle Scholar
  6. 6.
    Chen Z, Lin YM, Rooks MJ, Avouris P (2007) Graphene nano-ribbon electronics. Physica E 40(2):228–232CrossRefGoogle Scholar
  7. 7.
    Dragoman M, Dragoman D (2009) Graphene-based quantum electronics. Prog Quant Electron 33(6):165–214CrossRefGoogle Scholar
  8. 8.
    Hass J, De Heer W, Conrad E (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Matter 20(32):323202CrossRefGoogle Scholar
  9. 9.
    Myers M, Cooper J, Pejcic B, Baker M, Raguse B, Wieczorek L (2011) Functionalized graphene as an aqueous phase chemiresistor sensing material. Sens Actuat-B 155(1):154–158CrossRefGoogle Scholar
  10. 10.
    Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  11. 11.
    Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648CrossRefGoogle Scholar
  12. 12.
    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRefGoogle Scholar
  13. 13.
    Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu BL, Duan W (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J Phys Chem C 112(35):13442–13446CrossRefGoogle Scholar
  14. 14.
    Leenaerts O, Partoens B, Peeters FM (2008) Adsorption of H2 O, N H3, CO, N O2, and NO on graphene: A first-principles study. Phys Rev B Condens Matter Mater Phys 77(12)Google Scholar
  15. 15.
    Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3(2):301–306CrossRefGoogle Scholar
  16. 16.
    Romero HE, Joshi P, Gupta AK, Gutierrez HR, Cole MW, Tadigadapa SA, Eklund PC (2009) Adsorption of ammonia on graphene. Nanotechnology 20(24):245501CrossRefGoogle Scholar
  17. 17.
    Rastegar SF, Peyghan AA, Hadipour NL (2013) Response of Si-and Al-doped graphenes toward HCN: A computational study. Appl Surf Sci 265:412–417CrossRefGoogle Scholar
  18. 18.
    Qin X, Meng Q, Zhao W (2011) Effects of Stone–Wales defect upon adsorption of formaldehyde on graphene sheet with or without Al dopant: a first principle study. Surf Sci 605(9):930–933CrossRefGoogle Scholar
  19. 19.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (2004) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363CrossRefGoogle Scholar
  20. 20.
    Xu X, Goddard WA (2004) The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci U S A 101(9):2673–2677CrossRefGoogle Scholar
  21. 21.
    Ao Z, Yang J, Li S, Jiang Q (2008) Enhancement of CO detection in Al doped graphene. Chem Phys Lett 461(4):276–279CrossRefGoogle Scholar
  22. 22.
    Tachikawa H, Nagoya Y, Fukuzumi T (2010) J Power Sources 195(18):6148–6152CrossRefGoogle Scholar
  23. 23.
    Shemella P, Zhang Y, Mailman M, Ajayan PM, Nayak SK (2007) Appl Phys Lett 91(4):042101–042103CrossRefGoogle Scholar
  24. 24.
    Zou Y, Li F, Zhu Z, Zhao M, Xu X, Su X (2011) An ab initio study on gas sensing properties of graphene and Si-doped graphene. Euro. Phys J B 81:475–479Google Scholar
  25. 25.
    Wang R, Zhang D, Sun W, Han Z, Liu C (2007) A novel aluminum-doped carbon nanotubes sensor for carbon monoxide. J Mol Struct (THEOCHEM) 806:93–97CrossRefGoogle Scholar
  26. 26.
    Li SS (1993) Semiconductor physical electronics. Plenum, New YorkCrossRefGoogle Scholar
  27. 27.
    Shi Y, Fang W, Zhang K, Zhang W, Li LJ (2009) Photoelectrical Response in Single–Layer Graphene Transistors. Small 5:2005–2011CrossRefGoogle Scholar
  28. 28.
    Lin J, Zhong J, Kyle JR, Penchev M, Ozkan M, Ozkan CS (2011) Molecular absorption and photodesorption in pristine and functionalized large-area graphene layers. Nanotechnology 22(35):355701CrossRefGoogle Scholar
  29. 29.
    Ko G, Kim HY, Ahn J, Park YM, Lee KY, Kim J (2010) Graphene-based nitrogen dioxide gas sensors. Curr Appl Phys 10(4):1002–1004CrossRefGoogle Scholar
  30. 30.
    Hyman MP, Medlin JW (2005) Theoretical study of the adsorption and dissociation of oxygen on Pt (111) in the presence of homogeneous electric fields. J Phys Chem B 109(13):6304–6310CrossRefGoogle Scholar
  31. 31.
    Tománek D, Kreuzer HJ, Block JH (1985) Tight-binding approach to field desorption: N 2 ON Fe(111). Surf Sci 157(1):L315–L322CrossRefGoogle Scholar
  32. 32.
    Acharya CK, Turner C (2007) Effect of an electric field on the adsorption of metal clusters on boron-doped carbon surfaces. J Phys Chem C 111(40):14804–14812CrossRefGoogle Scholar
  33. 33.
    Zhao G-J, Han K-L (2011) Hydrogen bonding in the electronic excited state. Acc Chem Res 45(3):404–413CrossRefGoogle Scholar
  34. 34.
    Zhao GJ, Han KL (2008) Effects of hydrogen bonding on tuning photochemistry: concerted hydrogen–bond strengthening and weakening. Chemphyschem 9(13):1842–1846CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Somayeh F. Rastegar
    • 1
  • Nasser L. Hadipour
    • 1
  • Mohammad Bigdeli Tabar
    • 2
  • Hamed Soleymanabadi
    • 3
  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran
  2. 2.Physics group, Science departmentIslamic Azad University, Islamshahr BranchIslamshahrIran
  3. 3.Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations