Journal of Molecular Modeling

, Volume 19, Issue 9, pp 3501–3506 | Cite as

Reaction mechanism of CH3M≡MCH3 (M=C, Si, Ge) with C2H4: [2+1] or [2+2] cycloaddition?

  • Suhong Huo
  • Xiaoyan LiEmail author
  • Yanli Zeng
  • Shijun Zheng
  • Lingpeng MengEmail author
Original Paper


The mechanism of the cycloaddition reaction CH3M≡MCH3 (M=C, Si, Ge) with C2H4 has been studied at the CCSD(T)/6-311++G(d,p)//MP2/6-311++G(d,p) level. Vibrational analysis and intrinsic reaction coordinate (IRC), calculated at the same level, have been applied to validate the connection of the stationary points. The breakage and formation of the chemical bonds of the titled reactions are discussed by the topological analysis of electron density. The calculated results show that, of the three titled reactions, the CH3Si≡SiCH3+C2H4 reaction has the highest reaction activity because it has the lowest energy barriers and the products with the lowest energy. The CH3C≡CCH3+C2H4 reaction occurs only with difficulty since it has the highest energy barriers. The reaction mechanisms of the title reactions are similar. A three-membered-ring is initially formed, and then it changed to a four-membered-ring structure. This means that these reactions involve a [2+1] cycloaddition as the initial step, instead of a direct [2+2] cycloaddition.


Cycloaddition Heavier group 14 element Reaction mechanism Topological analysis of electron density 



Thanks for International Science Editing to edit this paper. This work was supported by the National Natural Science Foundation of China (Contract NO. 21102033, 21171047, 21073051), the Natural Science Foundation of Hebei Province (Contract NO. B2011205058), the Education Department Foundation of Hebei Province (NO. ZD2010126, ZH2012106).

Supplementary material

894_2013_1882_MOESM1_ESM.doc (6.5 mb)
ESM 1 (DOC 6653 kb)


  1. 1.
    Power PP (2007) Organmetallics 26:4362–4372CrossRefGoogle Scholar
  2. 2.
    Luke BT, Peple JA, Krogh-Jespersen MB, Apeloig Y, Karni M, Chandrasekhar J, Schleyer PVR (1986) J Am Chem Soc 108:270–284CrossRefGoogle Scholar
  3. 3.
    Koseki S, Gordon MS (1988) J Phys Chem 92:364–367CrossRefGoogle Scholar
  4. 4.
    Golegrove BT, Schaefer HF III (1991) J Am Chem Soc 113:1557–1561CrossRefGoogle Scholar
  5. 5.
    Kobayashi K, Nagase S (1997) Organometallic 16:2489–2491CrossRefGoogle Scholar
  6. 6.
    Nagase S, Kobayashi K, Tagagi N (2000) J Organmet Chem 611:254–258CrossRefGoogle Scholar
  7. 7.
    Karni M, Apeloig Y (2002) Silicon Chem 1:61–66CrossRefGoogle Scholar
  8. 8.
    Pignedoli CA, Curioni A, Andreoni W (2005) Chem Phys Chem 6:1795–1799CrossRefGoogle Scholar
  9. 9.
    Lein M, Krapp A, Frenking G (2005) J Am Chem Soc 127:6290–6299CrossRefGoogle Scholar
  10. 10.
    Frenking G, Krapp A, Nagase S, Takagi N, Sekiguchi A (2006) Chem Phys Chem 7:799–800CrossRefGoogle Scholar
  11. 11.
    Pignedoli CA, Curioni A, Andreoni W (2006) Chem Phys Chem 7:801–802CrossRefGoogle Scholar
  12. 12.
    Jung Y, Brynda M, Power PP, Head-Gordon M (2006) J Am Chem Soc 128:7185–7192CrossRefGoogle Scholar
  13. 13.
    Sekiguchi A, Zigler SS, West R, Michl J (1986) J Am Chem Soc 108:4241–4242CrossRefGoogle Scholar
  14. 14.
    Cordonnier M, Bogey M, Demuynck C, Destombes J-L (1982) J Chem Phys 97:7984–7989CrossRefGoogle Scholar
  15. 15.
    Bogey M, Bolvin H, Demuynck C, Destombes J-L (1991) Phys Rev Lett 66:413–416CrossRefGoogle Scholar
  16. 16.
    Karni M, Apeloig Y, Schroder D, Zummack W, Rabezanna R, Schwarz H (1999) Angew Chem Int Ed 38:332–335CrossRefGoogle Scholar
  17. 17.
    Pietschnig R, West R, Powell DR (2000) Organometallics 19:2724–2729CrossRefGoogle Scholar
  18. 18.
    Power PP (1999) Chem Rev 99:3463–3503CrossRefGoogle Scholar
  19. 19.
    Pu L, Twamley B, Power PP (2000) J Am Chem Soc 122:3524–3525CrossRefGoogle Scholar
  20. 20.
    Phillips AD, Wright RJ, Olmstead MM, Power PP (2002) J Am Chem Soc 124:5930–5931CrossRefGoogle Scholar
  21. 21.
    Pu L, Phillips AD, Richards AF, Stender M, Simons RS, Olmstead MM, Power PP (2003) J Am Chem Soc 125:11626–11636CrossRefGoogle Scholar
  22. 22.
    Sekiguchi A, Kinjo R, Ichinohe M (2004) Science 305:1755–1757CrossRefGoogle Scholar
  23. 23.
    Sugiyama Y, Sasamori T, Hosoi Y, Furukawa Y, Takagi N, Nagase S, Tokitoh N (2006) J Am Chem Soc 128:1023–1031CrossRefGoogle Scholar
  24. 24.
    Fischer RC, Pu L, Fettinger JC, Brynda MA, Power PP (2006) J Am Chem Soc 128:11366–11367CrossRefGoogle Scholar
  25. 25.
    Wiberg N, Vasisht SK, Fischer G, Mayer P (2004) Z Anorg Allg Chem 630:1823–1828CrossRefGoogle Scholar
  26. 26.
    Stender M, Phillips AD, Wright RJ, Power PP (2002) Angew Chem Int Ed 41:1785–1787CrossRefGoogle Scholar
  27. 27.
    Power PP (2010) Nature 463:171–177CrossRefGoogle Scholar
  28. 28.
    Kinjo R, Ichinohe M, Sekiguchi A, Takagi N, Sumimoto M, Nagase S (2007) J Am Chem Soc 129:7766–7767CrossRefGoogle Scholar
  29. 29.
    Cui C, Olmstead MM, Power PP (2004) J Am Chem Soc 126:5062–5063CrossRefGoogle Scholar
  30. 30.
    Cui C, Brynda M, Olmstead MM, Power PP (2004) J Am Chem Soc 126:6510–6511CrossRefGoogle Scholar
  31. 31.
    Glowacki DR, Marsden SP, Pilling MJ (2009) J Am Chem Soc 131:13896–13897CrossRefGoogle Scholar
  32. 32.
    Kına A, Piecuch P (2006) J Phys Chem A 110:367–378CrossRefGoogle Scholar
  33. 33.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506CrossRefGoogle Scholar
  34. 34.
    Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700–3703CrossRefGoogle Scholar
  35. 35.
    Ishida G, Morokuma K, Komornicki A (1977) J Chem Phys 66:2153–2156CrossRefGoogle Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03, Revision D. 02. Gaussian, Inc, WallingfordGoogle Scholar
  37. 37.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  38. 38.
    Popelier P (2000) Atoms in molecules-an introduction. UMIST ManchesterGoogle Scholar
  39. 39.
    Biegler-könig F, Schonbohm J (2000) AIM 2000 program package, ver. 2.0. University of Applied Science, BielefeldGoogle Scholar
  40. 40.
    Alikhani ME (1997) Chem Phys Lett 277:239–244CrossRefGoogle Scholar
  41. 41.
    Bader RFW (1991) Chem Rev 91:893–928CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangChina

Personalised recommendations