Skip to main content
Log in

DPT tautomerization of the long A∙A* Watson-Crick base pair formed by the amino and imino tautomers of adenine: combined QM and QTAIM investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Combining quantum-mechanical (QM) calculations with quantum theory of atoms in molecules (QTAIM) and using the methodology of sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), we showed for the first time that the biologically important A∙A* base pair (Cs symmetry) formed by the amino and imino tautomers of adenine (A) tautomerizes via asynchronous concerted double proton transfer (DPT) through a transition state (TS), which is the A+∙A zwitterion with the separated charge, with Cs symmetry. The nine key points, which can be considered as electron-topological “fingerprints” of the asynchronous concerted A∙A*↔A*∙A tautomerization process via the DPT, were detected and completely investigated along the IRC of the A∙A*↔A*∙A tautomerization. Based on the sweeps of the H-bond energies, it was found that intermolecular antiparallel N6Н⋯N6 (7.01 kcal mol−1) and N1H⋯N1 (6.88 kcal mol−1) H-bonds are significantly cooperative and mutually reinforce each other. It was shown for the first time that the A∙A*↔A*∙A tautomerization is assisted by the third C2H⋯HC2 dihydrogen bond (DHB), which, in contrast to the two others N6H⋯N6 and N1H⋯N1 H-bonds, exists within the IRC range from −2.92 to 2.92 Å. The DHB cooperatively strengthens, reaching its maximum energy 0.42 kcal mol−1 at IRC = −0.52 Å and minimum energy 0.25 kcal mol−1 at IRC = −2.92 Å, and is accompanied by strengthening of the two other aforementioned classical H-bonds. We established that the C2H⋯HC2 DHB completely satisfies the electron-topological criteria for H-bonding, in particular Bader’s and all eight “two-molecule” Koch and Popelier’s criteria. The positive value of the Grunenberg’s compliance constant (5.203 Å/mdyn) at the TSA∙A*↔A*∙A proves that the C2H⋯HC2 DHB is a stabilizing interaction. NBO analysis predicts transfer of charge from σ(C2–H) bonding orbital to σ*(H–C2) anti-bonding orbital; at this point, the stabilization energy E(2) is equal to 0.19 kcal mol−1 at the TSA∙A*↔A*∙A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lehninger AL (1970) Biochemistry: the molecular basis of cell structure and function. Worth, New York

    Google Scholar 

  2. Rich A (1964) In: Tumerman LA (ed) Horizons in biochemistry. Mir, Moscow

    Google Scholar 

  3. Brovarets’ OO, Hovorun DM (2013) Can tautomerization of the A∙T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. J Biomol Struct Dynam. doi:10.1080/07391102.2012.755795

    Google Scholar 

  4. Hovorun DM (1997) A structural isomerism of canonical nucleotide bases: AM1 calculation. Biopolym Cell 13:127–134

    Article  Google Scholar 

  5. Samijlenko SP, Krechkivska OM, Kosach DA, Hovorun DM (2004) Transitions to high tautomeric states can be induced in adenine by interactions with carboxylate and sodium ions: DFT calculation data. J Mol Struct 708:97–104

    Article  CAS  Google Scholar 

  6. Danilov VI, Anisimov VM, Kurita N, Hovorun D (2005) MP2 and DFT studies of the DNA rare base pairs: the molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chem Phys Lett 412:285–293

    Article  CAS  Google Scholar 

  7. Brovarets’ OO, Kolomiets’ IM, Hovorun DM (2012) Elementary molecular mechanisms of the spontaneous point mutations in DNA: a novel quantum-chemical insight into the classical understanding. In: Tada T (ed) Quantum chemistry—molecules for innovations. Rijeka, In Tech Open Access, pp 59–102

    Google Scholar 

  8. Fonseca Guerra C, Bickelhaupt FM, Saha S, Wang F (2006) Adenine tautomers: relative stabilities, ionization energies, and mismatch with cytosine. J Phys Chem A 110:4012–4020

    Article  CAS  Google Scholar 

  9. Sabio M, Topiol S, Lumma WC (1990) An investigation of tautomerism in adenine and guanine. J Phys Chem 94:1366–1372

    Article  CAS  Google Scholar 

  10. Kwiatkowski JS, Leszczynski J (1992) An ab initio quantum-mechanical study of tautomerism of purine, adenine and guanine. J Mol Struct (THEOCHEM) 208:35–44

    Article  Google Scholar 

  11. Salter LM, Chaban GM (2002) Theoretical study of gas phase tautomerization reactions for the ground and first excited electronic states of adenine. J Phys Chem A 106:4251–4256

    Article  CAS  Google Scholar 

  12. Singh RK, Ortiz JV, Mishra MK (2010) Tautomeric forms of adenine: vertical ionization energies and Dyson orbitals. Int J Quantum Chem 110:1901–1915

    CAS  Google Scholar 

  13. Trakhanov SD, Yusupov MM, Agalarov SC, Garber MB, Ryazantsev SN, Tischenko SV, Shirokov VA (1987) Crystallization of 70 S ribosomes and 30 S ribosomal subunits from Thermus thermophilus. FEBS Lett 220:319–322

    Article  Google Scholar 

  14. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30 S ribosomal subunit. Nature 407:327–339

    Article  CAS  Google Scholar 

  15. Lee JC, Gutell RR (2004) Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs. J Mol Biol 344:1225–1249

    Article  CAS  Google Scholar 

  16. von Böhlen K, Makowski I, Hansen HAS, Bartels H, Berkovitch-Yellin Z, Zaytzev-Bashan A, Meyer S, Paulke C, Franceschi F, Yonath A (1991) Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 Å resolution. J Mol Biol 222:11–15

    Article  Google Scholar 

  17. Kondratyuk IV, Samijlenko SP, Kolomiets’ IM, Hovorun DM (2000) Prototropic molecular–zwitterionic tautomerism of xanthine and hypoxanthine. J Mol Struct 523:109–118

    Article  CAS  Google Scholar 

  18. Sun X, Lee JK (2010) The stability of DNA duplexes containing hypoxanthine (inosine): gas versus solution phase and biological implications. J Org Chem 75:1848–1854

    Article  CAS  Google Scholar 

  19. O’Brien PJ, Ellenberger T (2004) The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site. J Biol Chem 279:26876–26884

    Google Scholar 

  20. Hill-Perkins M, Jones MD, Karran P (1986) Sitespecific mutagenesis in vivo by single methylated or deaminated purine bases. Mutat Res 162:153–163

    Article  CAS  Google Scholar 

  21. Basílio Janke EM, Riechert-Krause F, Weisz K (2011) Low-temperature NMR studies on inosine wobble base pairs. J Phys Chem B 115:8569–8574

    Article  Google Scholar 

  22. Brovarets’ OO, Hovorun DM (2012) Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis. J Biomol Struct Dynam. doi:10.1080/07391102.2012.715041

    Google Scholar 

  23. Brovarets’ OO, Zhurakivsky RO, Hovorun DM (2013) The physico-chemical “anatomy” of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. J Mol Model. doi:10.1007/s00894-012-1720-9

    Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Pople JA et al (2010) GAUSSIAN 09 (Revision B.01). Gaussian, Wallingford

    Google Scholar 

  25. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  26. Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4:297–306

    Article  CAS  Google Scholar 

  27. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Brovarets’ OO, Hovorun DM (2010) How stable are the mutagenic tautomers of DNA bases? Biopolym Cell 26:72–76

    Article  Google Scholar 

  30. Brovarets’ OO, Hovorun DM (2010) Stability of mutagenic tautomers of uracil and its halogen derivatives: the results of quantum-mechanical investigation. Biopolym Cell 26:295–298

    Article  Google Scholar 

  31. Brovarets’ OO, Hovorun DM (2010) Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine. Ukr Biochem J 82:55–60

    Google Scholar 

  32. Brovarets’ OO, Hovorun DM (2010) Molecular mechanisms of transitions induced by cytosine analogue: comparative quantum-chemical study. Ukr Biochem J 82:51–56

    Google Scholar 

  33. Brovarets’ OO, Hovorun DM (2010) Quantum-chemical investigation of the elementary molecular mechanisms of pyrimidine-purine transversions. Ukr Biochem J 82:57–67

    Google Scholar 

  34. Brovarets’ OO, Zhurakivsky RO, Hovorun DM (2010) Is there adequate ionization mechanism of the spontaneous transitions? Quantum-chemical investigation. Biopolym Cell 26:398–405

    Article  Google Scholar 

  35. Brovarets’ OO, Hovorun DM (2011) IR Vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: quantum-chemical study. Opt Spectrosc 111:750–757

    Article  Google Scholar 

  36. Brovarets’ OO, Hovorun DM (2011) Intramolecular tautomerization and the conformational variability of some classical mutagens—cytosine derivatives: quantum chemical study. Biopolym Cell 27:221–230

    Article  Google Scholar 

  37. Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166:281–289

    Article  CAS  Google Scholar 

  38. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  39. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chem Accounts Theor Comput Model 28:213–222

    CAS  Google Scholar 

  40. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  41. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  Google Scholar 

  42. Kendall RA, Dunning Jr TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  43. Brovarets’ OO, Yurenko YP, Dubey IY, Hovorun DM (2012) Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. J Biomol Struct Dynam 29:1101–1109

    Article  Google Scholar 

  44. Pelmenschikov A, Hovorun DM, Shishkin OV, Leszczynski J (2000) A density functional theory study of vibrational coupling between ribose and base rings of nucleic acids with ribosyl guanosine as a model system. J Chem Phys 113:5986–5990

    Article  CAS  Google Scholar 

  45. Shishkin OV, Pelmenschikov A, Hovorun DM, Leszczynski J (2000) Theoretical analysis of low-lying vibrational modes of free canonical 2′-deoxyribonucleosides. Chem Phys 260:317–325

    Article  CAS  Google Scholar 

  46. Platonov MO, Samijlenko SP, Sudakov OO, Kondratyuk IV, Hovorun DM (2005) To what extent can methyl derivatives be regarded as stabilized tautomers of xanthine? Spectrochim Acta A Mol Biomol Spectrosc 62:112–114

    Article  CAS  Google Scholar 

  47. Danilov VI, van Mourik T, Kurita N, Wakabayashi H, Tsukamoto T, Hovorun DM (2009) On the mechanism of the mutagenic action of 5-bromouracil: a DFT study of uracil and 5-bromouracil in a water cluster. J Phys Chem A 113:2233–2235

    Article  CAS  Google Scholar 

  48. Yurenko YP, Zhurakivsky RO, Ghomi M, Samijlenko SP, Hovorun DM (2007) Comprehensive conformational analysis of the nucleoside analogue 2′-β-deoxy-6-azacytidine by DFT and MP2 calculations. J Phys Chem B 111:6263–6271

    Article  CAS  Google Scholar 

  49. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Ghomi M, Hovorun D (2007) The whole of intramolecular H-bonding in the isolated DNA nucleoside thymidine. AIM electron density topological study. Chem Phys Lett 447:140–146

    Article  CAS  Google Scholar 

  50. Yurenko YP, Zhurakivsky RO, Ghomi M, Samijlenko SP, Hovorun DM (2007) How many conformers determine the thymidine low-temperature matrix infrared spectrum? DFT and MP2 quantum chemical study. J Phys Chem B 111:9655–9663

    Article  CAS  Google Scholar 

  51. Yurenko YP, Zhurakivsky RO, Ghomi M, Samijlenko SP, Hovorun DM (2008) Ab initio comprehensive conformational analysis of 2′-deoxyuridine, the biologically significant DNA minor nucleoside, and reconstruction of its low-temperature matrix infrared spectrum. J Phys Chem B 112:1240–1250

    Article  CAS  Google Scholar 

  52. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovorun DM (2011) Intramolecular CH ⋯O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis. J Biomol Struct Dynam 29:51–65

    Article  CAS  Google Scholar 

  53. Ponomareva AG, Yurenko YP, Zhurakivsky RO, van Mourik T, Hovorun DM (2012) Complete conformational space of the potential HIV-1 reverse transcriptase inhibitors d4U and d4C. A quantum chemical study. Phys Chem Chem Phys 14:6787–6795

    Article  CAS  Google Scholar 

  54. Matta CF (2010) How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules. J Comput Chem 31:1297–1311

    CAS  Google Scholar 

  55. Lozynski M, Rusinska-Roszak D, Mack H-G (1998) Hydrogen bonding and density functional calculations: the B3LYP approach as the shortest way to MP2 results. J Phys Chem A 102:2899–2903

    Article  CAS  Google Scholar 

  56. Hovorun DM, Gorb L, Leszczynski J (1999) From the nonplanarity of the amino group to the structural nonrigidity of the molecule: a post-Hartree-Fock ab initio study of 2-aminoimidazole. Int J Quantum Chem 75:245–253

    Article  CAS  Google Scholar 

  57. Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods to find transition states. Isr J Chem 33:449–454

    CAS  Google Scholar 

  58. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  59. Hratchian HP, Schlegel HB (2004) Accurate reaction paths using a Hessian based predictor-corrector integrator. J Chem Phys 120:9918–9924

    Article  CAS  Google Scholar 

  60. Hratchian HP, Schlegel HB (2005) Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In: Dykstra CE, Frenking G, Kim KS, Scuseria G (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam, pp 195–249

    Chapter  Google Scholar 

  61. Hratchian HP, Schlegel HB (2005) Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. J Chem Theory Comput 1:61–69

    Article  CAS  Google Scholar 

  62. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  63. Gutowski M, Van Lenthe JH, Verbeek J, Van Duijneveldt FB, Chalasinski G (1986) The basis set superposition error in correlated electronic structure calculations. Chem Phys Lett 124:370–375

    Article  CAS  Google Scholar 

  64. Sordo JA, Chin S, Sordo TL (1988) On the counterpoise correction for the basis set superposition error in large systems. Theor Chim Acta 74:101–110

    Article  CAS  Google Scholar 

  65. Sordo JA (2001) On the use of the Boys–Bernardi function counterpoise procedure to correct barrier heights for basis set superposition error. J Mol Struct (THEOCHEM) 537:245–251

    Article  CAS  Google Scholar 

  66. Atkins PW (1998) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  67. Wigner E (1932) Über das Überschreiten von potentialschwellen bei chemischen Reaktionen [crossing of potential thresholds in chemical reactions]. Zeit Physik Chem B19:203–216

    CAS  Google Scholar 

  68. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  69. Keith TA (2011) AIMAll (Version 11.12.19) Retrieved from http://aim.tkgristmill.com

  70. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  71. Iogansen AV (1999) Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochim Acta A Mol Biomol Spectrosc 55:1585–1612

    Article  Google Scholar 

  72. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  73. Mata I, Alkorta I, Espinosa E, Molins E (2011) Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chem Phys Lett 507:185–189

    Article  CAS  Google Scholar 

  74. Brandhorst K, Grunenberg J (2010) Efficient computation of compliance matrices in redundant internal coordinates from Cartesian Hessians for nonstationary points. J Chem Phys 132:184101–184107

    Article  Google Scholar 

  75. Brandhorst K, Grunenberg J (2008) How strong is it? The interpretation of force and compliance constants as bond strength descriptors. Chem Soc Rev 37:1558–1567

    Article  CAS  Google Scholar 

  76. Grunenberg J, Barone G (2013) Are compliance constants ill-defined descriptors for weak interactions? RSC Adv 3:4757–4762

    Article  CAS  Google Scholar 

  77. Weinhold F, Landis C (2005) Valency and bonding. A natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  78. Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  79. Govorun DN, Danchuk VD, Mishchuk YaR, Kondratyuk IV, Radomsky NF, Zheltovsky NV (1992) AM1 calculation of the nucleic acid bases structure and vibrational spectra. J Mol Struct 267:99–103

    Article  CAS  Google Scholar 

  80. Nikolaienko TY, Bulavin LA, Hovorun DM (2011) How flexible are DNA constituents? The quantum-mechanical study. J Biomol Struct Dynam 29:563–575

    Article  CAS  Google Scholar 

  81. Gribov LA, Mushtakova SP (1999) Quantum chemistry: textbook (Kvantovaya Khimiya: Uchebnik) (in Russian). Gardariki, Moscow, pp 317–319

    Google Scholar 

  82. Toro-Labbé A, Gutiérrez-Oliva S, Concha MC, Murray JS, Politzer P (2004) Analysis of two intramolecular proton transfer processes in terms of the reaction force. J Chem Phys 121:4570–4576

    Article  Google Scholar 

  83. Burda JV, Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2007) Reaction force decomposition of activation barriers to elucidate solvent effects. J Phys Chem A 111:2455–2457

    Article  CAS  Google Scholar 

  84. Jaque P, Toro-Labbé A, Politzer P, Geerlings P (2008) Reaction force constant and projected force constants of vibrational modes along the path of an intramolecular proton transfer reaction. Chem Phys Lett 456:135–140

    Article  CAS  Google Scholar 

  85. Murray JS, Toro-Labbé A, Clark T, Politzer P (2009) Analysis of diatomic bond dissociation and formation in terms of the reaction force and the position-dependent reaction force constant. J Mol Model 15:701–706

    Article  CAS  Google Scholar 

  86. Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2009) The reaction force and the transition region of a reaction. J Mol Model 15:707–710

    Article  Google Scholar 

  87. Murray JS, Toro-Labbé A, Gutiérrez-Oliva S, Politzer P (2010) Identification of pseudodiatomic behavior in polyatomic bond dissociation: reaction force analysis. J Chem Phys 132:154308

    Article  Google Scholar 

  88. Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004) Properties of the C-H⋯H dihydrogen bond: an ab initio and topological analysis. J Phys Chem A 108:10865–10872

    Google Scholar 

  89. Grabowski SJ, Sokalski WA, Leszczynski (2005) How short can the H⋯H intermolecular contact be? New findings that reveal the covalent nature of extremely strong interactions. J Phys Chem A 109:4331–4341

    Article  CAS  Google Scholar 

  90. Kaplan I (2006) Intermolecular interactions: physical picture, computational methods and model potentials (Wiley Series in Theoretical Chemistry). Wiley, Chichester

    Book  Google Scholar 

  91. Mishchuk YaR, Potyagaylo AL, Hovorun DM (2000) Structure and dynamics of 6-azacytidine by MNDO/H quantum-chemical method. J Mol Struct 552:283–289

    Article  CAS  Google Scholar 

  92. Ponomareva AG, Yurenko YP, Zhurakivsky RO, van Mourik T, Hovorun DM (2013) Structural and energetic properties of the potential HIV-1 reverse transcriptase inhibitors d4A and d4G: a comprehensive theoretical investigation. J Biomol Struct Dynam. doi:10.1080/07391102.2013.789401

  93. Brovarets’ OO, Yurenko YP, Hovorun DM (2013) Intermolecular СН⋯О/N Н-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J Biomol Struct Dynam. doi:10.1080/07391102.2013.799439

    Google Scholar 

  94. Bondi AJ (1964) Van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  95. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) Evidence for resonance-assisted hydrogen bonding. 4. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H…O system by crystal structure correlation methods. J Am Chem Soc 116:909–915

    Article  CAS  Google Scholar 

  96. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  97. Lakshmi B, Samuelson AG, Jovan Jose KV, Gadre SR, Arunan E (2005) Is there a hydrogen bond radius? Evidence from microwave spectroscopy, neutron scattering and X-ray diffraction results. New J Chem 29:371–377

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Science and Technology Center in Ukraine (STCU) within the project № 5728 for years 2012–2014. O.O.B. was supported by a Grant of the President of Ukraine to support scientific research of young scientists for 2012 year from the State Fund for Fundamental Research of Ukraine (project № GP/F44/086) and by a Grant of the President of Ukraine for talented youth for year 2012 from the Ministry of Education and Science, Youth and Sports of Ukraine. The authors thank the Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine for providing calculation resources and software. This work was performed using computational facilities of joint computer cluster of SSI “Institute for Single Crystals” of the National Academy of Sciences of Ukraine and Institute for Scintillation Materials of the National Academy of Sciences of Ukraine incorporated into Ukrainian National Grid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro M. Hovorun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 412 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brovarets’, O.O., Zhurakivsky, R.O. & Hovorun, D.M. DPT tautomerization of the long A∙A* Watson-Crick base pair formed by the amino and imino tautomers of adenine: combined QM and QTAIM investigation. J Mol Model 19, 4223–4237 (2013). https://doi.org/10.1007/s00894-013-1880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1880-2

Keywords

Navigation