Skip to main content
Log in

Conformation-dependent conductance through a molecular break junction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

An Erratum to this article was published on 12 September 2013

Abstract

Ab initio molecular dynamics simulations have been performed of a gold—1,4-benzenedithiol (BDT)—gold nanojunction under mechanical stress. For three different pulling rates between 10 and 40 m s-1, it is found that the nanowire always ruptures between the second and third Au atom from the thiol sulfur. Larger rupture forces and longer extensions are required at higher pulling rates and vice versa. The electrical conductance was calculated along a pulling trajectory using the DFT-NEGF method to study the effect of thermal and stress-induced structural changes on the electrical transport properties. While the mechanically induced stretching of the junction is seen to lower the time-averaged conductance, thermal conformational changes are capable of altering the conductance by one order of magnitude. No single geometric quantity could be identified as the main contributor to the conductance fluctuations. Small modulations, however, can be explained in terms of C=C double bond vibrations in the BDT molecule. The dependence of the conductance on different geometric variables has further been investigated systematically by performing constrained geometry optimizations along a number of angle and dihedral coordinates. The largest changes in the conductance are observed when the Au-S-C angle and the Au-S-C-C dihedral are simultaneously constrained.

Conductance changes upon mechanical stretching of Au/BDT system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hakkinen H (2012) Nature Chem 4(6):443. doi:10.1038/nchem.1352

    Article  Google Scholar 

  2. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278(5336):252. doi:10.1126/science.278.5336.252

    Article  CAS  Google Scholar 

  3. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, Mceuen PL, Ralph DC (2002) Nature 417(6890):722. doi:10.1038/nature00791

    Article  CAS  Google Scholar 

  4. Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Löhneysen (2002) Phys Rev Lett 88(17):176804. doi:10.1103/PhysRevLett.88.176804

    Article  CAS  Google Scholar 

  5. Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Nature 417(6890):725. doi:10.1038/nature00790

    Article  CAS  Google Scholar 

  6. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Science 294(5542):571. doi:10.1126/science.1064354

    Article  CAS  Google Scholar 

  7. Kushmerick JG, Holt DB, Yang JC, Naciri J, Moore MH, Shashidhar R (2002) Phys Rev Lett 89(8):086802+. doi:10.1103/PhysRevLett.89.086802

    Article  CAS  Google Scholar 

  8. Xu B, Tao NJ (2003) Science 301(5637):1221. doi:10.1126/science.1087481

    Article  CAS  Google Scholar 

  9. Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MC, van Ruitenbeek JM (2002) Nature 419(6910):906. doi:10.1038/nature01103

    Article  CAS  Google Scholar 

  10. Dorogi M, Gomez J, Osifchin R, Andres RP, Reifenberger R (1995) Phys Rev B 52:9071. doi:10.1103/PhysRevB.52.9071

    Article  CAS  Google Scholar 

  11. Andres RP, Bein T, Dorogi M, Feng S, Henderson JI, Kubiak CP, Mahoney W, Osifchin RG, Reifenberger R (1996) Science 272(5266):1323. doi:10.1126/science.272.5266.1323

    Article  CAS  Google Scholar 

  12. Xiao X, Tao NJ (2004) Nano Lett 4(2):267. doi:10.1021/nl035000m

    Article  CAS  Google Scholar 

  13. Tomfohr JK, Sankey OF (2002) Phys Stat Sol b 233(1):59. doi:10.1002/1521-3951(200209)

    Article  CAS  Google Scholar 

  14. Tomfohr J, Sankey OF (2004) J Chem Phys 120(3):1542. doi:10.1063/1.1625911

    Article  CAS  Google Scholar 

  15. Krüger D, Fuchs H, Rousseau R, Marx D, Parrinello M (2002) Phys Rev Lett 89(18):186402

    Article  Google Scholar 

  16. Krüger D, Rousseau R, Fuchs H, Marx D (2003) Angew Chem Int Ed 42:2251

    Article  Google Scholar 

  17. Reddy P, Jang SY, Segalman RA, Majumdar A (2007) Science 315(5818):1568. doi:10.1126/science.1137149

    Article  CAS  Google Scholar 

  18. Borges Pontes R, Rocha AR, Sanvito S, Fazzio A, da Silva AJR (2011) ACS Nano 2:795

    Article  Google Scholar 

  19. Strange M, Rostgaard C, Häkkinen H, Thygesen KS (2011) Phys Rev B 83:115108

    Article  Google Scholar 

  20. Strange M, Thygesen KS (2011) Beilstein J Nanotechnol 2:746

    Article  CAS  Google Scholar 

  21. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Daniel NO (2002) J Phys Cond Matt 14(11):2745. doi:10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78(7):1396. doi:10.1103/PhysRevLett.78

    Article  CAS  Google Scholar 

  24. Nosé S (1984) J Chem Phys 81(1):511. doi:10.1063/1.447334

    Article  Google Scholar 

  25. Huang F, Chen PA, Bennett T (2007) J Am Chem Soc 129(43):13225. doi:10.1021/ja074456t

    Article  CAS  Google Scholar 

  26. Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401. doi:10.1103/PhysRevB.65.165401

    Article  Google Scholar 

  27. Xue Y, Datta S, Ratner MA (2002) Chem Phys 151(2–3). doi:10.1016/S0301-0104(02)00446-9

  28. Fisher DS, Lee PA (1981) Phys Rev B 23:6851. doi:10.1103/PhysRevB.23.6851

    Article  CAS  Google Scholar 

  29. Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Phys Rev B 31:6207. doi:10.1103/PhysRevB.31.6207

    Article  Google Scholar 

  30. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) Science 283:1727

    Article  CAS  Google Scholar 

  31. Xu BQ, Xiao YX, Tao JN (2003) J Am Chem Soc 125:16164

    Article  CAS  Google Scholar 

  32. Pu Q, Leng Y, Zhao X, Cummings PT (2010) J Phys Chem C 114(23):10365. doi:10.1021/jp101689u

    Article  CAS  Google Scholar 

  33. Frei M, Aradhya SV, Koentopp M, Hybertsen MS, Venkataraman L (2011) Nano Lett 11(4):1518. doi:10.1021/nl1042903

    Article  CAS  Google Scholar 

  34. Andrews DQ, Van Duyne RP, Ratner MA (2008) Nano Lett 8:1120

    Article  CAS  Google Scholar 

  35. Chen W, Widawsky JR, Vásquez H, Schneebeli ST, Hybertsen MS, Breslow R, Venkataraman L (2011) J Am Chem Soc 133:17160

    Article  CAS  Google Scholar 

  36. Diez-Perez I, Hihath J, Hines T, Wang ZS, Zhou G, Müllen K, Tao N (2011) Nature Nanotech 6(4):226. doi:10.1038/nnano.2011.20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej M. Szyja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szyja, B.M., Nguyen, H.C., Kosov, D. et al. Conformation-dependent conductance through a molecular break junction. J Mol Model 19, 4173–4180 (2013). https://doi.org/10.1007/s00894-013-1794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1794-z

Keywords

Navigation