Skip to main content
Log in

Density functional studies of the stepwise substitution of pyrrole, furan, and thiophene with BCO

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures, stabilities, and aromaticities of a series of (BCO) n (CH)4–n NH (n = 0–4), (BCO) n (CH)4–n O (n = 0–4), and (BCO) n (CH)4–n S (n = 0–4) clusters were investigated at the B3LYP density functional level of theory. The most stable positional isomers of the individual clusters were obtained. All of the calculated CO binding energies were exothermic, suggesting that these BCO-substituted species are stable. Calculated differences in strain energy between the BCO-substituted structures and their corresponding hydrocarbon clusters were all exothermic, indicating that the BCO-substituted structures are less strained. The negative nucleus-independent chemical shift (NICS) values obtained show that these BCO-substituted clusters are aromatic compounds, in good agreement with the aromaticities of the corresponding hydrocarbon species. To aid further experimental investigations, CO-stretching frequencies were also computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gmelin L (1976) Chapter 10. In: Gmelin handbuch der anorganischen chemie: borverbindungen (1–4, Suppl. 1980–1996, vol. 37). Springer, Berlin

  2. Willner H, Aubke F (1997) Angew Chem Int Ed Engl 36:2402–2425

    Article  CAS  Google Scholar 

  3. Burg BA, Schlesinger HI (1937) J Am Chem Soc 59:780–787

    Article  CAS  Google Scholar 

  4. Finze M, Berndhardt E, Terheiden A, Berkei M, Willner H, Christen D, Oberhammer H, Aubke F (2002) J Am Chem Soc 124:15385–15398, and references therein

    Google Scholar 

  5. Zhou MF, Tsumor N, Andrews L, Xu Q (2002) J Am Chem Soc 124:12936–12937

    Article  CAS  Google Scholar 

  6. Zhou M, Xu Q, Wang ZX, Schleyer PR (2002) J Am Chem Soc 124:14854–14855

    Article  CAS  Google Scholar 

  7. Zhou M, Wang ZX, Schleyer PR (2003) ChemPhysChem 4:763–766

    Article  CAS  Google Scholar 

  8. Hoffmann R (1982) Angew Chem Int Ed Engl 21:711–717

    Article  Google Scholar 

  9. Papakondylis A, Miliordos E, Mavridis A (2004) J Phys Chem A 108:4335–4340

    Article  CAS  Google Scholar 

  10. Maier G, Reisenauer HP, Henkelmann J, Kliche C (1988) Angew Chem Int Ed Engl 27:294–295

    Article  Google Scholar 

  11. Cioslowski J, Hay PJ (1990) J Am Chem Soc 112:1707–1710

    Article  CAS  Google Scholar 

  12. Wu HS, Jiao H, Wang ZX, Schleyer PR (2003) J Am Chem Soc 125:4428–4429

    Article  CAS  Google Scholar 

  13. Wu HS, Qin XF, Xu XH, Jiao H, Schleyer PR (2005) J Am Chem Soc 127:2334–2338

    Article  CAS  Google Scholar 

  14. Wang ZX, Chen ZF, Jiao H, Schleyer PR (2005) J Theo Comp Chem 4:669–688

    Article  CAS  Google Scholar 

  15. Glossman MD (2001) J Mol Struct (THEOCHEM) 549:285–288

    Article  Google Scholar 

  16. Feixas F, Matito E, Poater J, Solà M (2008) J Comput Chem 29:1543–1554

    Article  CAS  Google Scholar 

  17. Schomaker V, Pauling L (1939) J Am Chem Soc 61:1769–1780

    Article  CAS  Google Scholar 

  18. Bak B, Christensen D, Hansen L, Rastrup-Andersen J (1956) J Chem Phys 24:720–725

    Article  CAS  Google Scholar 

  19. Nygaard L, Nielsen JT, Kirchheiner J, Maltesen G, Rastrup-Andersen J, Soerensen GO (1969) J Mol Struct 3(6):491–506

    Article  CAS  Google Scholar 

  20. Mellouki A, Liévin J, Herman M (2001) Chem Phys 271:239–266

    Article  CAS  Google Scholar 

  21. Cordell FR, Boggs JE (1981) J Mol Struct (THEOCHEM) 85:163–178

    Article  Google Scholar 

  22. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  23. Schleyer PR, Jiao H, Hommes NJRE, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669–12670

    Article  CAS  Google Scholar 

  24. Schleyer PR, Manoharan M, Wang ZX, Kiran B, Jiao H, Puchta R, Hommes NJRE (2001) Org Lett 3:2465–2468

    Article  CAS  Google Scholar 

  25. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  26. Frisch MJ et al (2003) Gaussian 03. Gaussian, Inc., Pittsburgh

  27. Rathke J, Schaefer R (1974) Inorg Chem 13:760–761

    Article  CAS  Google Scholar 

  28. Strauss SH (1997) Chemtracts Inorg Chem 10(1997):77–103

    CAS  Google Scholar 

  29. Lupinetti AJ, Frenking G, Strauss SH (1998) Angew Chem Int Ed Engl 37:2113–2116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 2103103), the Natural Science Foundation of Shandong Province (no. ZR2011EL005), and the Natural Science Foundation of Ludong University (no. LY2010006). We acknowledge the support provided by Shan Xi Normal University for the calculations performed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fang Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, XF., Wang, F. & Wu, HS. Density functional studies of the stepwise substitution of pyrrole, furan, and thiophene with BCO. J Mol Model 19, 2309–2315 (2013). https://doi.org/10.1007/s00894-013-1766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1766-3

Keywords

Navigation