Skip to main content
Log in

Zwitterion l-cysteine adsorbed on the Au20 cluster: enhancement of infrared active normal modes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The study reported herein addressed the structure, adsorption energy and normal modes of zwitterion l-cysteine (Z-cys) adsorbed on the Au20 cluster by using density functional theory (DFT). It was found that four Z-cys are bound to the Au20 apexes preferentially through S atoms. Regarding normal modes, after adsorption of four Z-cys molecules, a more intense infrared (IR) peak is maintained around 1,631.4 cm−1 corresponding with a C=O stretching mode, but its intensity is enhanced approximately six times. The enhancement in the intensity of modes between 0 to 300 cm−1 is around 4.5 to 5.0 times for normal modes that involve O–C=O and C-S bending modes. Other two normal modes in the range from 300 to 3,500 cm−1 show enhancements of 6.0 and 7.4 times. In general, four peaks show major intensities and they are related with normal modes of carboxyl and NH3 groups of Z-cys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li J, Li X, Zhai HJ, Wang LS (2003) Science 299:864–867

    Article  CAS  Google Scholar 

  2. Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Science 321:674–676

    Article  CAS  Google Scholar 

  3. Zhang HF, Stender M, Zhang R, Wang C, Li J, Wang LS (2004) J Phys Chem B 108:12259–12263

    Article  CAS  Google Scholar 

  4. Kryachko ES, Remacle F (2007) Int J Quantum Chem 107:2922–2934

    Article  CAS  Google Scholar 

  5. Molina B, Soto JR, Calles A (2008) Rev Mex Fis 54:314–318

    CAS  Google Scholar 

  6. Yang A, Fa W, Dong J (2010) Phys Lett A 374:4506–4511

    Article  CAS  Google Scholar 

  7. Vargas A, Santarossa G, Iannuzzi M, Baiker A (2009) Phys Rev B 80:195421-1–195421-13

    Article  Google Scholar 

  8. Wang ZW, Palmer RE (2012) Nanoscale 4:4947–4949

    Article  CAS  Google Scholar 

  9. Yang G, Zu Y, Liu C, Fu Y, Zhou L (2008) J Phys Chem B 112(23):7104–7110

    Article  CAS  Google Scholar 

  10. Görbitz HC, Dalhus B (1996) Acta Cryst C 52:1756–1759

    Article  Google Scholar 

  11. Moggach SA, Clark SJ, Parson S (2005) Acta Cryst E 61:o2739–o2742

    Article  Google Scholar 

  12. Wilke JJ, Lind MC, Schaefer HF III, Császár AG, Allen WD (2009) J Chem Theor Comput 5:1511–1523

    Article  CAS  Google Scholar 

  13. Roux MV, Foces-Foces C, Notario R, Ribeiro da Silva MAV, Ribeiro da Silva M, das Dores MC, Filipa A, Santos LOM, Juaristi EJ (2010) Phys Chem B 114:10530–10540

    Article  CAS  Google Scholar 

  14. Gargaro AR, Barron LD, Hecht LJ (1993) Raman Spectrosc 24:91–96

    Article  CAS  Google Scholar 

  15. Pawlukojc A, Leciejewicz J, Ramirez-Cuesta AJ, Nowicka-Scheibe J (2005) J Spectrochim Acta A 61:2474–2481

    Article  CAS  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  17. Bernhard HS (1999) J Chem Phys 111:8819–8824

    Article  Google Scholar 

  18. Jiménez-Hoyos CA, Janesko BG, Scuseria GE (2008) Phys Chem Chem Phys 10:6621–6629

    Article  Google Scholar 

  19. Klamt A, Schüürmann GJ (1993) Chem Soc Perkin Trans 2:799

    Article  Google Scholar 

  20. Klamt A, Jonas V, Burger T, Lohrenz J (1998) J Phys Chem 102:5074

    Article  CAS  Google Scholar 

  21. Delley B (2006) Mol Simul 32:117–123

    Article  CAS  Google Scholar 

  22. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  23. Delley B (2002) Phys Rev B 66:155125

    Article  Google Scholar 

  24. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  25. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  26. Foley S, Enescu M (2007) Vib Spectrosc 44:256–265

    Article  CAS  Google Scholar 

  27. Diaz Fleming G, Finnerty JJ, Campos-Vallette M, Célis F, Aliaga AE, Fredes C, Koch Rainer J (2009) Raman Spectrosc 40:632–638

    Article  Google Scholar 

  28. Dobrowolski JC, Rode JE, Sadlej J (2007) THEOCHEM 810:129–134

    Article  CAS  Google Scholar 

  29. Hull JM, Provorse MR, Aikens CM (2012) J Phys Chem A 116:5445–5452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the Consejo Nacional de Ciencia y Tecnología, the Departamento de Supercómputo of Universidad Nacional Autónoma de México, and the National Science Fundation (NSF) for support with grants DMR-1103730, “Alloys at the nanoscale: the case of nanoparticles second phase and PREM: NSF PREM Grant # DMR 0934218; “Oxide and metal nanoparticles—the interface between life sciences and physical sciences”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Tlahuice-Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tlahuice-Flores, A. Zwitterion l-cysteine adsorbed on the Au20 cluster: enhancement of infrared active normal modes. J Mol Model 19, 1937–1942 (2013). https://doi.org/10.1007/s00894-013-1763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1763-6

Keywords

Navigation