Skip to main content
Log in

Spectroscopic investigations and hydrogen bond interactions of 8-aza analogues of xanthine, theophylline and caffeine: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structure, spectral properties and the hydrogen bond interactions of 8-aza analogues of xanthine, theophylline and caffeine have been studied by using quantum chemical methods. The time-dependent density functional theory (TD-DFT) and the singly excited configuration interaction (CIS) methods are employed to optimize the excited state geometries of isolated 8-azaxanthine, 8-azatheophylline tautomers and 8-azacaffeine in both the gas and solvent phases. The solvent phase calculations are performed using the polarizable continuum model (PCM). The absorption and emission spectra are calculated using the time-dependent density functional theory (TD-DFT) method. The results from the TD-DFT calculations reveal that the excitation spectra are red shifted relative to absorption in aqueous medium. These changes in the transition energies are qualitatively comparable to the experimental data. The examination of molecular orbital reveals that the molecules with a small H→L energy gap possess maximum absorption and emission wavelength. The relative stability and hydrogen bonded interactions of mono and heptahydrated 8-azaxanthine, 8-azatheophylline tautomers and 8-azacaffeine have been studied using the density functional theory (DFT) and Møller Plesset perturbation theory (MP2) implementing the 6-311++G(d,p) basis set. The formation of strong N-H…O bond has resulted in the highest interaction energy among the monohydrates. Hydration does not show any significant impact on the stability of heptahydrated complexes. The atoms in molecule (AIM) and natural bonding orbital (NBO) analyses have been performed to elucidate the nature of the hydrogen bond interactions in these complexes.

Absorption and emission spectra of 8-aza analogues of xanthine, theophylline and caffeine in methanol medium

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maldonado CR, Quiros M, Salas JM (2009) First and second coordination spheres in divalent metal compounds containing pyridine and 4,6-dimethyl-1,2,3-triazolo[4,5-d]pyrimidin-5,7-dione. Polyhedron 28:911–916

    Article  CAS  Google Scholar 

  2. Maldonado CR, Quiros M, Salas JM, Rodriguez-Dieguez A (2009) A study of the second coordination sphere in 8-azaxanthinato salts of divalent metal aquacomplexes. Inorg Chim Acta 362:1553–1558

    Article  CAS  Google Scholar 

  3. Ravichandran V, Ruban GA, Chacko KK, Molina MAR, Rodriguez EC, Salas-Peregrin JM, Aoki K, Yamazaki H (1986) Crystal structures of an antiallergic 8-azapurine (v-triazolo[4,5-d]pyrimidine) and its metal complex, 3-methyl-8-azaxanthine monohydrate and trans-diamminebis (3-methyl-8-azaxanthinato)copper(II) dehydrate. J Chem Soc Chem Commun doi:10.1039/C39860001780

  4. Purnell LG, Estes ED, Hodgson DJ (1976) Interaction of metal ions with 8-azapurines.II Synthesis and structure of bis(8-azahypoxanthinato)tetraaquocadmium (II). J Am Chem Soc 98:740–743

    Article  CAS  Google Scholar 

  5. Graves BJ, Hodgson DJ (1981) Metal ion interactions with 8-azapurines-synthesis and structure of dichlorobis (8-azaadenine)mercury(II) and tetraaquabis (8-azahypoxanthinato) mercury(II). Inorg Chem 20:2223–2229

    Article  CAS  Google Scholar 

  6. Gu J, Wang J, Leszczynski J (2004) H-bonding patterns in the platinated guanine-cytosine base pair and guanine-cytosine-guanine-cytosine base tetrad: an electron density deformation analysis and aim study. J Am Chem Soc 126:12651–12660

    Article  CAS  Google Scholar 

  7. Vince R, Hua M (1990) Synthesis and anti-HIV activity of carbocyclic 2′,3′-didehydro-2′,3′- dideoxy 2,6-disubstituted purine nucleosides. J Med Chem 33:17–21

    Article  CAS  Google Scholar 

  8. Albert A (1986) Chemistry of 8-Azapurines (1, 2, 3-Triazolo[4, 5-d] pyrimidines). Adv Heterocycl Chem 39:117–180

    Article  CAS  Google Scholar 

  9. Brule G, Eckhardt SJ, Hall TC, Winkler A (1973) Drug therapy of cancer. World Health Organisation, Geneva

    Google Scholar 

  10. Schabel FM Jr (1968) The antiviral activity of 9-b-D-arabinofuranosyladenine (ara-A). Chemotherapy 13:321–338

    Article  CAS  Google Scholar 

  11. Ward DC, Reich E (1969) Relationship between nucleoside conformation and bio-logical activity. Annu Rep Med Chem 5:272–284

    Article  Google Scholar 

  12. Grunberger D, Grunberger G (1979) In: Hahn FE (ed) Antibiotics, vol 2. Springer-Verlag, Berlin, pp 110–123

    Google Scholar 

  13. Shewach DS, Krawczyk SH, Acevedo OL, Townsend LB (1992) Inhibition of adenosine deaminase by azapurine ribonucleosides. Biochem Pharmacol 44:1697–1700

    Article  CAS  Google Scholar 

  14. Franchetti P, Messini L, Cappellacci L, Grifantini M, Lucacchini A, Martini C, Senatore G (1994) 8-azaxanthine derivatives as antagonists of adenosine receptors. J Med Chem 37:2970–2975

    Article  CAS  Google Scholar 

  15. Shoemaker AL, Hodgson DJ (1977) Structure of 7-methyl-8-azaadenine - crystallographic and molecular-orbital study. J Am Chem Soc 99:4119–4123

    Article  CAS  Google Scholar 

  16. Singh P, Hodgson DJ (1977) 2-Azaadenosine hemihydrates. J Am Chem Soc 99:4807–4815

    Article  CAS  Google Scholar 

  17. Lemay HE Jr, Hodgson DJ (1978) Antiallergenic 8-azapurines. Structural characterization of 9-diethylcarbamoyl-2-(2-propoxyphenyl)-8-azahypoxanthine. J Am Chem Soc 100:6474–6478

    Article  CAS  Google Scholar 

  18. Wilson SR, Wilson RB, Shoemaker AL, Wooldridge KRH, Hodgson DJ (1982) Antiallergic 8-azapurines 3.Structural characterization of 2-(2-Proproxyphenyl)- 8- azahypoxanthine, 2-(2-propoxy-5-(propylsulfonyl) phenyl)-8-azahypoxanthine and 2-(2-propoxy-5-(N-methyl-N-isopropylsalfomoyl) phenyl-8-azahypoxanthine. J Am Chem Soc 104:259–264

    Article  CAS  Google Scholar 

  19. Nubel G, Pfleiderer WP (1965) Purine V: Über die Synthese und Struktur von 8-Aza-xanthin (5.7-Dioxo-tetrahydro-ν-triazolo[4.5-d]pyrimidin) und seinen N-Methyl-Derivaten. Chem Ber 98:1060–1072

    Article  Google Scholar 

  20. L’abbe G, Persoons MA, Toppet S (1985) Study of the prototropic tautomerism of 8- azatheophylline by 13C and 15N NMR spectroscopy. Magn Res Chem 25:362–364

    Article  Google Scholar 

  21. Sanchez MP, Romnero MA, Salas JM, Cardenas DJ, Molina J, Quiros M (1995) Molecular- orbital study of 8-azaxanthine derivatives and crystal-structure of 1,3-dimethyl-8-azaxanthine monohydrate. J Mol Struct 344:257–264

    Article  CAS  Google Scholar 

  22. Wierzchowski J, Wielgus-Kutrowska B, Shugar D (1996) Fluorescence emission properties of 8-azapurines and their nucleosides, and application to the kinetics of the reverse synthetic reaction of purine nucleoside phosphorylase. Biochim Biophys Acta 1290:9–17

    Article  Google Scholar 

  23. Wierzchowski J, Bzowska A, Stepniak K, Shugar D (2004) Interactions of calf spleen purine nucleoside phosphorylase with 8-azaguanine, and a bisubstrate analogue inhibitor: implications for the reaction mechanism. Z Naturforsch 59:713–725

    CAS  Google Scholar 

  24. Ito S, Takeshi T, Mori H, Teruo A (1981) A sensitive new method for measurement of guanase with 8-azaguanine in bicine bis-hydroxy ethyl glycine buffer as substrate. Clin Chim Acta 115:135–144

    Article  CAS  Google Scholar 

  25. Perez-Vicente R, Alamillo JM, Cardenas J, Pineda M (1992) Purification and substrate inactivation of xanthine dehydrogenase from clamydomonus reinhardtii. Biochim Biophys Acta 1117:159–166

    Article  CAS  Google Scholar 

  26. Colloc’h N, El Hajji M, Bachet B, L’Hermite G, Schiltz M, Prange T, Castro B, Mornon JP (1997) Crystal structure of the protein drug urate oxidase-inhibitor complex at 2.05 Å resolution. Nat Struct Biol 4:947–952

    Article  Google Scholar 

  27. Retailleau P, Colloc’h N, Vivares D, Bonnete F, Castro B, El Hajji M, Mornon JP, Prange T (2004) Complexed and ligand-free high resolution structures of urate oxidase (Uox) from aspergillus flavus: a re-assignation of the active site binding mode. Acta Cryst D60:453–462

    CAS  Google Scholar 

  28. Medza G, Wierzchowski J, Kierdaszuk B, Shugar D (2009) Fluorescence emission properties of 8-aza analogues of caffeine, theophylline and N-alkyl xanthines. Bioorg Med Chem 17:2585–2591

    Article  CAS  Google Scholar 

  29. Klymchenko AS, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5:461–468

    Article  CAS  Google Scholar 

  30. Maity SS, Samanta S, Sardar PS, Pal A, Dasgupta S, Ghosh S (2008) Fluorescence, anisotropy and docking studies of proteins through excited state intramolecular proton transfer probe molecules. Chem Phys 354:162–173

    Article  CAS  Google Scholar 

  31. Casida ME (1995) In: Chong DP (ed) Recent advances in density functional methods, part I. World Scientific, Singapore

    Google Scholar 

  32. Gross EKU, Dobson JF, Petersilka M (1996) In: Nalewajski RF (ed) Density functional theory II. Springer, Heidelberg

    Google Scholar 

  33. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) Toward a systematic molecular orbital theory for excited states. J Phys Chem 96:135–149

    Article  CAS  Google Scholar 

  34. Wang D, Hao C, Wang S, Dong H, Qiu J (2012) Time-dependent density functional theory study on the electronic excited-state hydrogen bonding of the chromophore coumarin 153 in a room-temperature ionic liquid. J Mol Mod 18:937–945

    Article  CAS  Google Scholar 

  35. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  36. Gledening ED, Reed AE, Carpenter JA, Weinhold F, NBO Version 3.1

  37. Becke AD (1998) Density-functional exchange-energy approximation with correct asymptotic Behavior. Phys Rev A 38:3098–3100

    Article  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Moller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  CAS  Google Scholar 

  40. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic Interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. J Chem Phys 55:117–129

    CAS  Google Scholar 

  41. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies - some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  42. MORPHY98 (1998) A program written by Popelier PLA with a contribution from Bone UMIST RGA. Manchester, UK

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al. (2003) Gaussian03, Revision B.05. Gaussian, Inc, Pittsburgh

    Google Scholar 

  44. Madariaga ST, Contreras JG (2003) Interaction energies in non Watson-Crick pairs: an ab initio study of g·u and u·u pairs. J Chil Chem Soc 48:129–133

    Article  CAS  Google Scholar 

  45. Smith EDL, Hammond RB, Jones MJ, Roberts KJ, Mitchell JBO, Price SL, Harris RK, Apperley DC, Cherryman JC, Docherty R (2001) The determination of the crystal structure of anhydrous theophylline by X-ray powder diffraction with a systematic search algorithm, lattice energy calculations, and C-13 and N-15 solid-state NMR: a question of polymorphism in a given unit cell. J Phys Chem B 105:5818–5826

    Article  CAS  Google Scholar 

  46. Wierzchowski J, Sepiol J, Sulikowski D, Kierdaszuk B, Shugar D (2006) Fluorescence emission properties of 8-azaxanthine and its N-alkyl derivatives: excited-state proton transfer, and potential applications in enzymology. J Photochem Photobiol A–Chem 179:276–282

    Article  CAS  Google Scholar 

  47. Valeur B (2002) Molecular fluorescence, principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  48. Kryachko ES (2006) In: Grabowski SJ (ed) Hydrogen bonding-new insights. Springer, Dordrecht

    Google Scholar 

  49. Balbuena PB, Blocker W, Dudek RM, Cabrales-Navarro FA, Hirunsit P (2008) Vibrational spectra of anhydrous and monohydrated caffeine and theophylline molecules and Crystals. J Phys Chem A 112:10210–10219

    Article  CAS  Google Scholar 

  50. Karthika M, Senthilkumar L, Kanakaraju R (2012) Theoretical investigations on 6,8-dithioguanine tautomers. Struct Chem 23:1203–1218

    Article  CAS  Google Scholar 

  51. Karthika M, Senthilkumar L, Kanakaraju R (2012) Theoretical studies on hydrogen bonding in caffeine-theophylline complexes. Comput Theoret Chem 979:54–63

    Article  CAS  Google Scholar 

  52. Senthilkumar L, Ghanty TK, Ghosh SK (2005) Electron density and energy decomposition analysis in hydrogen-bonded complexes of azabenzenes with water, acetamide, and thioacetamide. J Phys Chem A 109:7575–7582

    Article  CAS  Google Scholar 

  53. Koch U, Popelier PLA (1995) Characterization of C-H-O Hydrogen Bonds based on the Charge Density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  54. Popelier PLA, Bader RFW (1992) The existence of an intramolecular C-H-O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett 189:542–548

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Kanakaraju.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 8816 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthika, M., Kanakaraju, R. & Senthilkumar, L. Spectroscopic investigations and hydrogen bond interactions of 8-aza analogues of xanthine, theophylline and caffeine: a theoretical study. J Mol Model 19, 1835–1851 (2013). https://doi.org/10.1007/s00894-012-1742-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1742-3

Keywords

Navigation