Skip to main content
Log in

DFT studies on the intrinsic conformational properties of non-ionic pyrrolysine in gas phase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

B3LYP/6-31G(d,p) level of theory is used to carry out a detailed gas phase conformational analysis of non-ionized (neutral) pyrrolysine molecule about its nine internal back-bone torsional angles. A total of 13 minima are detected from potential energy surface exploration corresponding to the nine internal back-bone torsional angles. These minima are then subjected to full geometry optimization and vibrational frequency calculations at B3LYP/6-31++G(d,p) level. Characteristic intramolecular hydrogen bonds present in each conformer, their relative energies, theoretically predicted vibrational spectra, rotational constants and dipole moments are systematically reported. Single point calculations are carried out at B3LYP/6-311++G(d,p) and MP2/6-31++G(d,p) levels. Six types of intramolecular H-bonds, viz. O…H–O, N…H-O, O…H–N, N…H–N, O…H–C and N…H–C, are found to exist in the pyrrolysine conformers; all of which contribute to the stability of the conformers. The vibrational frequencies are found to shift invariably toward the lower side of frequency scale corresponding to the presence of intramolecular H-bond interactions in the conformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atkins JF (2002) Gesteland R Sci 296(5572):1409–1410

    CAS  Google Scholar 

  2. James CM, Ferguson TK, Leykam JF, Krzycki JA (2001) J Biol Chem 276:34252–34258

    Article  CAS  Google Scholar 

  3. Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK (2002) Science 296:1462–1466

    Article  CAS  Google Scholar 

  4. Srinivasan G, James CM, Krzycki JA (2002) Science 296:1459–1462

    Article  CAS  Google Scholar 

  5. Lukashenko NP (2010) Russ J Genet 46:899–916

    Article  CAS  Google Scholar 

  6. Krzycki JA (2004) Curr Opin Chem Biol 8:484–491

    Article  CAS  Google Scholar 

  7. Rother M, Krzycki JA (2010) Archaea doi: 10.1155/2010/453642.

  8. Gaston MA, Zhang L, Green-Church KB, Krzycki JA (2011) Nature 471:647–650

    Article  CAS  Google Scholar 

  9. Dudev T, Lim C (2009) J Phys Chem B 113:11754–11764

    Article  CAS  Google Scholar 

  10. Fekner T, Li X, Lee MM, Chan MK (2009) Angew Chem 121:1661–1663

    Article  Google Scholar 

  11. Fekner T, Li X, Chan MK (2010) Eur J Org Chem doi: 10.1016/j.cbpa.2011.03.007

  12. Maksic ZB, Kovacevic B (1999) J Chem Soc Perkin Trans 2:2623–2629

    Google Scholar 

  13. Rak J, Skurski P, Simons J, Gutowski M (2001) J Am Chem Soc 123:11695–11707

    Article  CAS  Google Scholar 

  14. Czinki E, Csaszar AG (2003) Chem Eur J 9:1008–1019

    Article  CAS  Google Scholar 

  15. Chen M, Huang Z, Lin Z (2005) J Mol Struct (THEOCHEM) 719:153–158

    Article  CAS  Google Scholar 

  16. Kaur D, Sharma P, Bharatam PV, Kaur M (2008) Int J Quant Chem 108:983–991

    Article  CAS  Google Scholar 

  17. Zhang M, Lin Z (2006) J Mol Struct (THEOCHEM) 760:159–166

    Article  CAS  Google Scholar 

  18. Huang Z, Lin Z (2005) J Phys Chem A 109:2656–2659

    Article  CAS  Google Scholar 

  19. Szidarovszky T, Czako G, Csaszar AG (2009) Mol Phys 107:761–775

    Article  CAS  Google Scholar 

  20. Tehrani ZA, Tavasoli E, Fattahi A (2010) J Mol Struct (THEOCHEM) 960:73–85

    Article  CAS  Google Scholar 

  21. Lambie B, Ramaekers R, Maes G (2004) J Phys Chem A 108:10426–10433

    Article  CAS  Google Scholar 

  22. Stepanian SG, Reva ID, Radchenko ED, Adamowicz L (1998) J Phys Chem A 102:4623–4629

    Article  CAS  Google Scholar 

  23. Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Chem Rev 102:371–386

    Article  CAS  Google Scholar 

  24. Foloppe N, Hartmann B, Nilsson L, MacKerell AD Jr (2002) Biophys J 82:1554–1569

    Article  CAS  Google Scholar 

  25. Sponer J, Zgarbova M, Jurecka P, Riley KE, Sponer JE, Hobza P (2009) J Chem Theory Comput 5:1166–1179

    Article  CAS  Google Scholar 

  26. Hao B, Zhao G, Kang PT, Soares JA, Ferguson TM, Gallucci J, Krzycki JA, Chan MK (2004) Chem Biol 11:1317–1324

    Article  CAS  Google Scholar 

  27. Osawa S, Jukes TH, Watanabe K, Muto A (1992) Microbiol Rev 56(1):229–264

    Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1993) Phys Rev B 37:785–789

    Article  Google Scholar 

  30. Yurenko YP, Zhurakivsky RO, Ghomi M, Samijlenko SP, Hovorun DM (2007) J Phys Chem B 111:6263–6271

    Article  CAS  Google Scholar 

  31. Kecel S, Ozel AE, Akyuz S, Celik S, Agaeva G (2011) J Mol Struct 993:349–356

    Article  CAS  Google Scholar 

  32. Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937–2941

    Article  CAS  Google Scholar 

  33. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, Pittsburgh

    Google Scholar 

  34. Freeman F, Le KT (2003) J Phys Chem A 107:2908–2918

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  37. Stepanian SG, Reva ID, Radchenko ED, Rosado MTS, Duarte MLTS, Fausto R, Adamowicz L (1998) J Phys Chem A 102:1041–1054

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GD is thankful to Council of Scientific and Industrial Research, New Delhi, India, for generous allocation of computational facilities through the Research Project No. 37(1481)/11/EMR-II. SM is also grateful to the University Grants Commission, Government of India, New Delhi, for financial assistance through a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunajyoti Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1330 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, G., Mandal, S. DFT studies on the intrinsic conformational properties of non-ionic pyrrolysine in gas phase. J Mol Model 19, 1695–1704 (2013). https://doi.org/10.1007/s00894-012-1740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1740-5

Keywords

Navigation