Skip to main content
Log in

Ab initio molecular dynamics simulation on the formation process of He@C60 synthesized by explosion

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The applications of endohedral non-metallic fullerenes are limited by their low production rate. Recently, an explosive method developed in our group shows promise to prepare He@C60 at fairly high yield, but the mechanism of He inserting into C60 cage at explosive conditions was not clear. Here, ab initio molecular dynamics analysis has been used to simulate the collision between C60 molecules at high-temperature and high-pressure induced by explosion. The results show that defects formed on the fullerene cage by collidsion can effectively decrease the reaction barrier for the insertion of He into C60, and the self-healing capability of the defects was also observed.

Simulation of He@C60 formation by explosive method. Ab initio molecular dynamics has been used to simulate collision of C60. Defects caused by fullerenes reaction in explosion are shown by theory. The defects decrease the reaction barrier for He inserting into C60 cage. The method provides a promising technique to synthesized He@C60

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ball P (2011) Material witness: caged water. Nat Mater 10:649–649. doi:10.1038/nmat3107

    Article  CAS  Google Scholar 

  2. Ju CY, Suter D, Du JF (2007) Two-qubit gates between noninteracting qubits in endohedral-fullerene-based quantum computation. Phys Rev A 75:12318–12322

    Article  Google Scholar 

  3. Cimpoesu F, Ito S, Shimotani H, Takagi H, Dragoe N (2011) Vibrational properties of noble gas endohedral fullerenes. Phys Chem Chem Phys 13:9609–9615

    Article  CAS  Google Scholar 

  4. Saunders M, Jiménez-Vázquez HA, Cross RJ, Mroczkowski S, Freedberg DI, Anet FAL (1994) Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70. Nature 367:256–258

    Article  CAS  Google Scholar 

  5. Buhl M, Patchkovskii S, Thiel W (1997) Interaction energies and NMR chemical shifts of noble gases in C60. Chem Phys Lett 275:14–18

    Article  Google Scholar 

  6. Dodziuk H, Dolgonos G, Lukin O (2001) Molecular mechanics study of endohedral fullerene complexes with small molecules. Carbon 39:1907–1911

    Article  CAS  Google Scholar 

  7. Kareev IE, Bubnov VP, Laukhina EE, Koltover VK, Yagubskii EB (2003) Endohedral metallofullerenes M@C82 (M=La, Y): synthesis and transport properties. Carbon 41:1375–1380

    Article  CAS  Google Scholar 

  8. Saunders M, Jiménez-Vázquez HA, Cross RJ, Mroczkowski S, Gross ML, Giblin DE, Poreda RJ (1994) Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high-pressure. J Am Chem Soc 116:2193–2194

    Article  CAS  Google Scholar 

  9. Saunders M, Cross RJ, Jiménez-Vázquez HA, Shimshi R, Khong A (1996) Noble gas atoms inside fullerenes. Science 271:1693–1697

    Article  CAS  Google Scholar 

  10. Murata Y, Murata M, Komatsu K (2003) 100 % encapsulation of a hydrogen molecule into an open-cage fullerene derivative and gas-phase generation of H2@C60. J Am Chem Soc 125:7152–7153

    Article  CAS  Google Scholar 

  11. Stanisky CM, Cross RJ, Saunders M, Murata M, Murata Y, Komatsu K (2005) Helium entry and escape through a chemically opened window in a fullerene. J Am Chem Soc 127:299–302

    Article  CAS  Google Scholar 

  12. Komatsu K, Murata M, Murata Y (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307:238–240

    Article  CAS  Google Scholar 

  13. Stanisky CM, Cross RJ, Saunders M (2009) Putting atoms and molecules into chemically opened fullerenes. J Am Chem Soc 131:3392–3395

    Article  CAS  Google Scholar 

  14. Balch AL (2011) H2O in a desert of carbon atoms. Science 333:531–532

    Article  Google Scholar 

  15. Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333:613–616

    Article  CAS  Google Scholar 

  16. Teligmann R, Krawez N, Lin S, Hertel IV, Campbell EEP (1996) Endohedral fullerene production. Nature 382:407–408

    Article  Google Scholar 

  17. Shimshi R, Cross RJ, Saunders M (1997) Beam implantation: a new method for preparing cage molecules containing atoms at high incorporation levels. J Am Chem Soc 119:1163–1164

    Article  CAS  Google Scholar 

  18. Ohtsuki T, Ohno K, Shiga K, Kawazoe Y, Maruyama Y, Masumoto K (1998) Insertion of Xe and Kr atoms into C60 and C70 fullerenes and the formation of dimers. Phys Rev Lett 81:967–970

    Article  CAS  Google Scholar 

  19. Patchkovskii S, Thiel W (1996) How does helium get into buckminsterfullerene? J Am Chem Soc 118:7164–7172

    Article  CAS  Google Scholar 

  20. Zahn D (2005) Unprejudiced identification of reaction mechanisms from biased transition path sampling. J Chem Phys 123:44104–44110

    Article  Google Scholar 

  21. Granot R, Baer R (2008) A tight-binding potential for helium in carbon systems. J Chem Phys 129:214102–214106

    Article  Google Scholar 

  22. Peng RF, Chu SJ, Huang YM, Yu HJ, Wang TS, Jin B et al (2009) Preparation of He@C60 and He2@C60 by an explosive method. J Mater Chem 19:3602–3605

    Article  CAS  Google Scholar 

  23. Manaa MR, Fried LE, Melius CF, Elstner M, Frauenheim T (2002) Decomposition of HMX at extreme conditions a molecular dynamics simulation. J Am Chem Soc 106:9024–9029

    CAS  Google Scholar 

  24. Dlott DD (1999) Ultrafast spectroscopy of shock waves in molecular materials. Annu Rev Phys Chem 50:251–278

    Article  CAS  Google Scholar 

  25. Strachan A, van Duin ACT, Chakraborty D, Dasgupta S, Goddard WA III (2003) Shock waves in high-energy materials: the initial chemical events in nitramine RDX. Phys Rev Lett 91:98301–98304

    Article  Google Scholar 

  26. Strachana A, Kober EM, van Duin ACT, Oxgaard J, Goddard WA III (2005) Thermal decomposition of RDX from reactive molecular dynamics. J Chem Phys 122:54502–54511

    Article  Google Scholar 

  27. Liu L, Krack M, Michaelides A (2008) Density oscillations in a nanoscale water film on salt: insight from Ab initio molecular dynamics. J Am Chem Soc 130:8572–8573

    Article  CAS  Google Scholar 

  28. Liu LM, Krack M, Michaelides A (2009) Interfacial water: a first principles molecular dynamics study of a nanoscale water film on salt. J Chem Phys 130:234702–234713

    Article  Google Scholar 

  29. Vondele JV, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167:103–128

    Article  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  31. Grimme S, Antony J, Ehrlich S, Krieget H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104–154122

    Article  Google Scholar 

  32. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  33. Kabir M, Mukherjee S, Saha-Dasgupta T (2011) Substantial reduction of Stone-Wales activation barrier in fullerene. Phys Rev B 84:205404–205410

    Article  Google Scholar 

  34. Hesselmann A, Korona T (2011) On the accuracy of DFT-SAPT, MP2, SCS-MP2, MP2C, and DFT+Disp methods for the interaction energies of endohedral complexes of the C60 fullerene with a rare gas atom. Phys Chem Chem Phys 13:732–743

    Article  CAS  Google Scholar 

  35. Cao BP, Peres T, Cross RJ, Saunders M, Lifshitz C (2005) Unimolecular dissociations of C70 + and its noble gas endohedral cations Ne@C70 + and Ar@C70 +: Cage-binding energies for C2 loss. J Phys Chem A 109:10257–10263

    Article  CAS  Google Scholar 

  36. Cao B, Peres T, Cross RJ, Saunders M, Lifshitz C (2001) Do nitrogen-atom- containing endohedral fullerenes undergo the shrink-wrap mechanism? J Phys Chem A 105:2142–2146

    Article  CAS  Google Scholar 

  37. Jakowski J, Irle S, Morokuma K (2010) Collision-induced fusion of two C60 fullerenes: quantum chemical molecular dynamics simulations. Phys Rev B 82:125443–125450

    Article  Google Scholar 

  38. Brink C, Hvelplund P, Shen H, Jiménez-Vázquez HA, Cross RJ, Saunders M (1998) Collisional fragmentation of Ar@C60. Chem Phys Lett 286:28–34

    Article  CAS  Google Scholar 

  39. Saunders M, Jiménez-Vázquez HA, Cross RJ, Poredaet RJ (1993) Stable compounds of helium and neon: He@C60 and Ne@C60. Science 259:1428–1430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the National Natural Science Foundation of China (Project NOs. 50972122, 11244001, 51222212), Youth Innovation Research Team of Sichuan for Carbon Nanomaterials (Project No. 2011JTD0017), state key laboratory cultivation base for nonmetal composites and functional materials, Southwest University of Science and Technology (Project NO. 11ZXFK16) and Science Foundation of China Academy of Engineering Physics (Project NO. 11ZH0157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Fang Peng.

Additional information

To experimentally study explosion shock wave, a method of small scale gap test was improved to guarantee the steady propagation of shock wave, a Mn-Cu manometer was used to measure the detonation pressure (23.5–28.8 GPa), and the range of detonation velocity was 2 to 5 × 103 m s-1. It was found that there is a close relation between explosion shock wave of explosive quality and the yields of He@C60

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JY., Liu, LM., Jin, B. et al. Ab initio molecular dynamics simulation on the formation process of He@C60 synthesized by explosion. J Mol Model 19, 1705–1710 (2013). https://doi.org/10.1007/s00894-012-1737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1737-0

Keywords

Navigation