Skip to main content
Log in

DFT study on the reactions of ClO/BrO with RCl (R = CH3, C2H5, and C3H7) in gas phase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Gas-phase reactions of ClO/BrO with RCl (R = CH3, C2H5, and C3H7) have been investigated in detail using the popular DFT functional BHandHLYP/aug-cc-pVDZ level of theory. As a result, our findings strongly suggest that the type of reaction is firstly initiated by a typical SN2 fashion. Subsequently, two competitive substitution steps, named as SN2-induced substitution and SN2-induced elimination, respectively, would proceed before the initial SN2 product ion-dipole complex separates, in which the former exhibits less reactivity than the latter. Those are consistent with relevant experimental results. Moreover, we have also explored reactivity difference for the title reactions in term of some factors derived from methyl group, p-π electronic conjugation, ionization energy (IE), as well as molecular orbital (MO) analysis.

Energy profiles for the ClO– reactions and BrO–reactions, respectively

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Villano SM, Eyet N, Lineberger WC, Bierbaum VM (2009) J Am Chem Soc 131:8227–8233

    Article  CAS  Google Scholar 

  2. Mackay GI, Bohme DK (1978) J Am Chem Soc 100:327–329

    Article  CAS  Google Scholar 

  3. Olmstead WN, Brauman JI (1977) J Am Chem Soc 99:4219–4228

    Article  CAS  Google Scholar 

  4. Brauman JI, Blair LK (1970) J Am Chem Soc 92:5986–5992

    Article  CAS  Google Scholar 

  5. Brodbelt JS, Isbell J, Goodman JM, Secor HV, Seeman JI (2001) Tetrahedron Lett 42:6949–6952

    Article  CAS  Google Scholar 

  6. Villano SM, Kato S, Lineberger WC, Bierbaum VM (2006) J Am Chem Soc 128:736–737

    Article  CAS  Google Scholar 

  7. Hu WP, Truhlar DG (1996) J Am Chem Soc 118:860–869

    Article  CAS  Google Scholar 

  8. Lieder CA, Brauman JI (1975) Int J Mass Spectrom Ion Process 16:307–319

    Article  CAS  Google Scholar 

  9. Wladkowski BD, Brauman JI (1992) J Am Chem Soc 114:10643–10644

    Article  CAS  Google Scholar 

  10. Lum RC, Grabowski JJ (1988) J Am Chem Soc 110:8568–8570

    Article  CAS  Google Scholar 

  11. Jones ME, Ellison GB (1989) J Am Chem Soc 111:1645–1654

    Article  CAS  Google Scholar 

  12. Gronert S, DePuy CH, Bierbaum VM (1991) J Am Chem Soc 113:4009–4010

    Article  CAS  Google Scholar 

  13. DePuy CH, Gronert S, Mullin A, Bierbaum VM (1990) J Am Chem Soc 112:8650–8655

    Article  CAS  Google Scholar 

  14. Gronert S, Pratt LM, Mogali S (2001) J Am Chem Soc 123:3081–3091

    Article  CAS  Google Scholar 

  15. Gronert S, Fagin AE, Okamoto K, Mogali S, Pratt LM (2004) J Am Chem Soc 126:12977–12983

    Article  CAS  Google Scholar 

  16. Gronert S (2003) Acc Chem Res 36:848–857

    Article  CAS  Google Scholar 

  17. Lum RC, Grabowski JJ (1992) J Am Chem Soc 114:9663–9664

    Article  CAS  Google Scholar 

  18. Noest AJ, Nibbering NMM (1980) Adv Mass Spectrom 8:227–233

    Google Scholar 

  19. Bartmess JE, Hays RL, Khatri HN, Misra RN, Wilson SR (1981) J Am Chem Soc 103:4746–4751

    Article  CAS  Google Scholar 

  20. Van Doren JM, Barlow SE, Depuy CH, Bierbaum VM (1987) Int J Mass Spectrom 81:85–100

    Article  Google Scholar 

  21. Wille U, Dreessen T (2006) J Phys Chem A 110:2195–2203

    Article  CAS  Google Scholar 

  22. Wille U, Tan JC-S, Mucke EK (2008) J Org Chem 73:5821–5830

    Article  CAS  Google Scholar 

  23. Kyne SH, Schiesser CH, Matsubara H (2008) J Org Chem 73:427–434

    Article  CAS  Google Scholar 

  24. Espinosa-Garcia J (1999) Chem Phys Lett 315:239–247

    Article  CAS  Google Scholar 

  25. Linstrom PJ, Mallard WG (2005) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  26. Chase WM, Davies CA, Downey JJR, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF Thermochemical Tables, 3rd ed., Parts I and II. J Phys Chem Ref Data Suppl 1

  27. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Parthiban S, de Oliveira G, Martin JML (2001) J Phys Chem A 105:895–904

    Article  CAS  Google Scholar 

  30. Takahashi M, Tsutsui S, Sakamoto K, Kira M, Muller T, Apeloig Y (2001) J Am Chem Soc 123:347–348

    Article  CAS  Google Scholar 

  31. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  32. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E.01. Gaussian Inc, Wallingford

  34. DePuy CH, Bierbaum VM (1981) J Am Chem Soc 103:5034–5038

    Article  CAS  Google Scholar 

  35. Applequist DE, Peterson AH (1961) J Am Chem Soc 83:862–865

    Article  CAS  Google Scholar 

  36. Kapeller D, Barth R, Mereiter K, Hammerschmidt F (2007) J Am Chem Soc 129:914–923

    Article  CAS  Google Scholar 

  37. Nobe Y, Arayama K, Urabe H (2005) J Am Chem Soc 127:18006–18007

    Article  CAS  Google Scholar 

  38. Bierbaum VM, Depuy CH, Shapiro RH (1977) J Am Chem Soc 99:5800–5802

    Article  CAS  Google Scholar 

  39. Kass SR, Filley JJ, Doren MV, Depuy CH (1986) J Am Chem Soc 108:2849–2852

    Article  CAS  Google Scholar 

  40. Wiberg KB, Murcko MA(1987) J Phys Chem 91:3616-3620

    Google Scholar 

  41. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  42. Bento AP, Bickelhaupt FM (2008) J Org Chem 73:7290–7299

    Article  CAS  Google Scholar 

  43. King GK, Maricq MM, Bierbaum VM, DePuy CH (1981) J Am Chem Soc 103:7133–7140

    Article  CAS  Google Scholar 

  44. Allred AL (1961) J Inorg Nucl Chem 17:215–221

    Article  CAS  Google Scholar 

  45. Jones WM, LaBar RA, Brinker UH, Gebert PH (1977) J Am Chem Soc 99:6379–6391

    Article  CAS  Google Scholar 

  46. Moss RA, Fedorynski M, Shieh WC (1979) J Am Chem Soc 101:4736–4738

    Article  CAS  Google Scholar 

  47. Moss RA, Munjal RC (1979) Tetrahedron Lett 19:4721–4724

    Article  Google Scholar 

  48. Smith NP, Stevens IDR (1979) J Chem Soc Perkin Trans 2:1298–1308

    Google Scholar 

Download references

Project supported: The Scientific and Technical Project Supported by Gansu Province (Project No. 090GKCA027), The Scientific and Technical Project of Lanzhou City (Project No. 2009-1-167), Science Fund of Public Welfare Meteorological Organization (Project No. GYHY200806021 and GYHY201106029), National Basic Research Program of China (Project No. 2012CB955304), the National Key Natural Science Fund (Project No. 40830957), and National Natural Science Fund (Project No. 41261052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Yanbin or Zhang Qiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junxi, L., Yanbin, W., Qiang, Z. et al. DFT study on the reactions of ClO/BrO with RCl (R = CH3, C2H5, and C3H7) in gas phase. J Mol Model 19, 1739–1750 (2013). https://doi.org/10.1007/s00894-012-1736-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1736-1

Keywords

Navigation