Advertisement

Journal of Molecular Modeling

, Volume 19, Issue 5, pp 2165–2172 | Cite as

Why is quercetin a better antioxidant than taxifolin? Theoretical study of mechanisms involving activated forms

  • Edison Osorio
  • Edwin G. Pérez
  • Carlos Areche
  • Lina María Ruiz
  • Bruce K. Cassels
  • Elizabeth Flórez
  • William TiznadoEmail author
Original Paper

Abstract

The stronger antioxidant capacity of the flavonoid quercetin (Q) compared with taxifolin (dihydroquercetin, T) has been the subject of previous experimental and theoretical studies. Theoretical work has focused on the analysis of hydrogen bond dissociation energies (BDE) of the OH phenolic groups, but consider mechanisms that only involve the transfer of one hydrogen atom. In the present work we consider other mechanisms involving a second hydrogen transfer in reactions with free radicals. The relative stability of the radicals formed after the first hydrogen transfer reaction is considered in discussing the antioxidant activity of Q and T. In terms of global and local theoretical reactivity descriptors, we propose that the radical arising from Q should be more persistent in the environment and with the capability to react with a second radical by hydrogen transfer, proton transfer and electron transfer mechanisms. These mechanisms could be responsible of the stronger antioxidant capacity of Q.

Keywords

Antioxidant Flavonoid Quantum chemistry 

Notes

Acknowledgments

This work was partially funded by the Millennium Scientific Initiative (Ministerio de Economía, Fomento y Turismo) (Grant P10-035-F), Fondo Nacional de Desarrollo Científico y Tecnológico (Grants: 11090431 and 11110241) and The Research Office of the University of Medellín, project 626. E.O. thanks to the Fondo de atracción a Postdoctorado, Universidad de Talca.

References

  1. 1.
    Ross JA, Kasum CM (2002) Annu Rev Nutr 22:19–34CrossRefGoogle Scholar
  2. 2.
    Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR (1999) J Agric Food Chem 47:2274–2279CrossRefGoogle Scholar
  3. 3.
    Vinson JA, Dabbagh YA, Serry MM, Jang JH (1995) J Agric Food Chem 43:2800–2802CrossRefGoogle Scholar
  4. 4.
    RiceEvans CA, Miller NJ, Paganga G (1996) Free Radical Biol Med 20:933–956CrossRefGoogle Scholar
  5. 5.
    Burton GW, Doba T, Gabe EJ, Hughes L, Lee FL, Prasad L, Ingold KU (1985) J Am Chem Soc 107:7053–7065CrossRefGoogle Scholar
  6. 6.
    de Heer MI, Mulder P, Korth HG, Ingold KU, Lusztyk J (2000) J Am Chem Soc 122:2355–2360CrossRefGoogle Scholar
  7. 7.
    Jovanovic SV, Steenken S, Hara Y, Simic MG (1996) J Chem Soc Perkin 2:2497–2504Google Scholar
  8. 8.
    Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) J Am Chem Soc 116:4846–4851CrossRefGoogle Scholar
  9. 9.
    Foti MC, Daquino C, Geraci C (2004) J Org Chem 69:2309–2314CrossRefGoogle Scholar
  10. 10.
    Litwinienko G, Ingold KU (2003) J Org Chem 68:3433–3438CrossRefGoogle Scholar
  11. 11.
    Zhang HY, Ji HF (2006) New J Chem 30:503–504CrossRefGoogle Scholar
  12. 12.
    Anouar E, Kosinova P, Kozlowski D, Mokrini R, Duroux JL, Trouillas P (2009) Phys Chem Chem Phys 11:7659–7668CrossRefGoogle Scholar
  13. 13.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) J Phys Chem A 108:4916–4922CrossRefGoogle Scholar
  14. 14.
    Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acc 111:210–216CrossRefGoogle Scholar
  15. 15.
    Leopoldini M, Pitarch IP, Russo N, Toscano M (2004) J Phys Chem A 108:92–96CrossRefGoogle Scholar
  16. 16.
    Leopoldini M, Russo N, Chiodo S, Toscano M (2006) J Agric Food Chem 54:6343–6351CrossRefGoogle Scholar
  17. 17.
    Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173–1183CrossRefGoogle Scholar
  18. 18.
    Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288–306CrossRefGoogle Scholar
  19. 19.
    Russo N, Toscano M, Uccella N (2000) J Agric Food Chem 48:3232–3237CrossRefGoogle Scholar
  20. 20.
    Priyadarsini I, Naik G, Mohan H, Maity D (2003) Free Radical Biol Med 35:8CrossRefGoogle Scholar
  21. 21.
    Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers A, Rietjens I (2001) Free Radical Biol Med 31:869–881CrossRefGoogle Scholar
  22. 22.
    Lucarini M, Peduli GF, Guerra M (2004) Chem-Eur J 10:933–939CrossRefGoogle Scholar
  23. 23.
    DiLabio GA, Pratt DA, LoFaro AD, Wright JS (1999) J Phys Chem A 103:1653–1661CrossRefGoogle Scholar
  24. 24.
    Trouillas P, Fagnere C, Lazzaroni R, Calliste C, Marfak A, Duroux JL (2004) Food Chem 88:571–582CrossRefGoogle Scholar
  25. 25.
    Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux JL (2006) Food Chem 97:679–688CrossRefGoogle Scholar
  26. 26.
    Zhang HY, Sung YM, Wang XL (2003) Chem-Eur J 9:502–508CrossRefGoogle Scholar
  27. 27.
    Zhang HY (2004) New J Chem 28:1284–1285CrossRefGoogle Scholar
  28. 28.
    Vanacker S, Degroot MJ, Vandenberg DJ, Tromp M, Donneopdenkelder G, VanderVijgh WJF, Bast A (1996) Chem Res Toxicol 9:1305–1312CrossRefGoogle Scholar
  29. 29.
    Miller NJ, Riceevans C, Davies MJ, Gopinathan V, Milner A (1993) Clin Sci 84:407–412Google Scholar
  30. 30.
    Riceevans C, Miller NJ (1994) Methods Enzymol 234:279–293CrossRefGoogle Scholar
  31. 31.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873CrossRefGoogle Scholar
  32. 32.
    Parr RG, Yang WT (1984) J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  33. 33.
    Parr RG, Von Szentpaly L, Liu SB (1999) J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  34. 34.
    Pearson RG (1963) J Am Chem Soc 85:3533–3543CrossRefGoogle Scholar
  35. 35.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  36. 36.
    Sen KD, Mingos DMP (1993) Chemical hardness: structure and Bonding. Springer, BerlinGoogle Scholar
  37. 37.
    Pearson RG (1997) Chemical Hardness. Wiley-VCH, New YorkCrossRefGoogle Scholar
  38. 38.
    Parr RG, Yang W (1989) Density Functional Theory of atoms and Molecules. Oxford University Press, OxfordGoogle Scholar
  39. 39.
    Parkinson CJ, Mayer PM, Radom L (1999) J Chem Soc Perkin 2:2305–2313Google Scholar
  40. 40.
    Fuentealba P, Florez E, Tiznado W J Chem Theory Comput 6:1470–1478 -Google Scholar
  41. 41.
    Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) J Phys Chem A 109:3220–3224CrossRefGoogle Scholar
  42. 42.
    Chamorro E, Duque M, Cardenas C, Santos C, Tiznado W, Fuentealba P (2005) J Chem Sci 117:419–424CrossRefGoogle Scholar
  43. 43.
    Florez E, Tiznado W, Mondragon F, Fuentealba P (2005) J Phys Chem A 109:7815–7821CrossRefGoogle Scholar
  44. 44.
    Tiznado W, Oña OB, Bazterra VE, Caputo MC, Facelli JC, Ferraro MB, Fuentealba P (2005) J Chem Phys 123Google Scholar
  45. 45.
    Tiznado W, Oña OB, Caputo MC, Ferraro MB, Fuentealba P (2009) J Chem Theory Comput 5:2265–2273CrossRefGoogle Scholar
  46. 46.
    Chandanshive JZ, Bonini BF, Tiznado W, Escobar CA, Caballero J, Femoni C, Fochi M, Franchini MC Eur. J Org Chem:4806–4813Google Scholar
  47. 47.
    Osorio E, Ferraro MB, Ona OB, Cardenas C, Fuentealba P, Tiznado W J Chem Theory Comput 7:3995–4001Google Scholar
  48. 48.
    Osorio E, Ferraro MB, Ona OB, Cardenas C, Fuentealba P, Tiznado W J Chem Theory Comput 7:3995–4001Google Scholar
  49. 49.
    Chattaraj PK, Maiti B, Sarkar U (2003) J Phys Chem A 107:4973–4975CrossRefGoogle Scholar
  50. 50.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  51. 51.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  52. 52.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  53. 53.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  54. 54.
    Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian, Inc, Wallingford, CTGoogle Scholar
  55. 55.
    Kohout M (2008) DGrid. Radebeul, GermanyGoogle Scholar
  56. 56.
    Mulder P, Korth HG, Ingold KU (2005) Helv Chim Acta 88:370–374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Edison Osorio
    • 1
    • 2
  • Edwin G. Pérez
    • 3
  • Carlos Areche
    • 4
  • Lina María Ruiz
    • 5
  • Bruce K. Cassels
    • 4
  • Elizabeth Flórez
    • 6
  • William Tiznado
    • 1
    Email author
  1. 1.Departamento de Ciencias Químicas, Facultad de Ciencias ExactasUniversidad Andres BelloSantiagoChile
  2. 2.Centro de Bioinformática y Simulación MolecularUniversidad de TalcaTalcaChile
  3. 3.Facultad de QuímicaPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Departamento de Química, Facultad de CienciasUniversidad de ChileSantiagoChile
  5. 5.Departamento de Biología, Facultad de Ciencias BiológicasUniversidad Andres BelloSantiagoChile
  6. 6.Departamento de Ciencias BásicasUniversidad de MedellínMedellínColombia

Personalised recommendations