Abstract
In this work we define a shape entropy by calculating the Shannon’s entropy of the shape function. This shape entropy and its linear response to the change in the total number of electrons of the molecule are explored as descriptors of bonding properties. Calculations on selected molecular systems were performed. According to these, shape entropy properly describes electron delocalization while its linear response to ionization predicts changes in bonding patterns. The derivative of the shape entropy proposed turned out to be fully determined by the shape function and the Fukui function.
This is a preview of subscription content, access via your institution.






References
Gagliardi L, Roos BO (2007) Multiconfigurational quantum chemical methods for molecular systems containing actinides. Chem Soc Rev 36:893–903
Roos BO, Borin AC, Gagliardi L (2007) The maximum multiplicity of the covalent chemical bond. Angew Chem Int Ed 46:1469–1472
Bader R (1994) Atoms in Molecules: a quantum theory. Oxford Univ. Press, Oxford
Tognetti V, Joubert L, Cortona P, Adamo C (2009) Toward a combined DFT/QTAIM description of agostic bonds: the critical case of a Nb(III) complex. J Phys Chem A 113:12322–12327
Nalewajski RF (2006) Information theory of molecular systems. Elsevier, Cambridge
Ihara S (1993) Information theory for continuous systems. World Scientific, Singapore
Hocker D, Li X, Iyengar SS (2011) Shannon entropy based time-dependent deterministic sampling for efficient on-the-fly quantum dynamics and electronic structure. J Chem Theory Comput 7:256–268
Sagar RP, Hô M (2008) Shannon entropies of atomic basins and electron correlation effects. J Mex Chem Soc 52:60–66
Corzo HH, Laguna HG, Sagar RP (2012) Localization phenomena in a cyclic box. J Math Chem 50:233–248
Noorizadeh S, Shakerzadeh E (2010) Shannon entropy as a new measure of aromaticity, Shannon aromaticity. Phys Chem Chem Phys 12:4742–4749
Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656
Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New York
El Saddik A, Orozco M, Asfaw Y, Shirmohammadi S, Adler A (2007) A novel biometric system for identification and verification of haptic users. IEEE Trans Instrum Meas 56:895–906
Moddemeijer R (1989) On estimation of entropy and mutual information of continuous distributions. Signal Process 16:233–248
Gadre SR, Sears SB, Chakravorty SJ, Bendale RD (1985) Some novel characteristics of atomic information entropies. Phys Rev A 32:2602–2606
Hô MH, Sagar RP, Pérez-Jordá JM, Smith VH, Esquivel RO (1994) A numerical study of molecular information entropies. Chem Phys Lett 219:15–20
Hô MH, Sagar RP, Smith VH, Esquivel RO (1994) Atomic information entropies beyond the Hartree-Fock limit. J Phys B Atomic Mol Opt Phys 27:5149–5157
Hô MH, Sagar RP, Weaver DF, Smith VH (1995) An investigation of the dependence of Shannon-information entropies and distance measures on molecular-geometry. Int J Quantum Chem S29:109–115
Esquivel RO, Rodríguez AL, Sagar RP, Hô MH, Smith VH (1996) Physical interpretation of information entropy: numerical evidence of the Collins conjecture. Phys Rev A 54:259–265
Ramírez JC, Soriano C, Esquivel RO, Sagar RP, Hô MH, Smith VH (1997) Jaynes information entropy of small molecules: numerical evidence of the Collins conjecture. Phys Rev A 56:4477–4482
Hô M, Smith VH, Weaver DF, Gatti C, Sagar RP, Esquivel RO (1998) Molecular similarity based on information entropies and distances. J Chem Phys 108:5469–5475
Hô M, Weaver DF, Smith VH, Sagar RP, Esquivel RO, Yamamoto S (1998) An information entropic study of correlated densities of the water molecule. J Chem Phys 109:10620–10627
Chattaraj PK, Chamorro E, Fuentealba P (1999) Chemical bonding and reactivity: a local thermodynamic viewpoint. Chem Phys Lett 314:114–121
Nalewajski RF, Parr RG (2000) Information theory, atoms in molecules, and molecular similarity. Proc Natl Acad Sci 97:8879–8882
Nalewajski RF (2002) Applications of the information theory to problems of molecular electronic structure and chemical reactivity. Int J Mol Sci 3:237–259
Ayers PW (2000) Atoms in molecules, an axiomatic approach. I. Maximum transferability. J Chem Phys 113:10886–10898
Parr RG, Ayers PW, Nalewajski RF (2005) What is an atom in a molecule? J Phys Chem A 109:3957–3959
Ghiringhelli LM, Delle Site L, Mosna RA, Hamilton IP (2010) Information-theoretic approach to kinetic-energy functionals: the nearly uniform electron gas. J Math Chem 48:78–82
Ghiringhelli LM, Hamilton IP, Delle Site L (2010) Interacting electrons, spin statistics, and information theory. J Chem Phys 132:014106
Parr RG, Bartolotti LJ (1983) Some remarks on the density functional theory of few-electron systems. J Phys Chem 87:2810–2815
Cedillo A (1994) A new representation for ground-states and its Legendre transforms. Int J Quantum Chem Symp 28:231–240
Baekelandt BG, Cedillo A, Parr RG (1995) Reactivity indexes and fluctuation formulas in density-functional theory—isomorphic ensembles and a new measure of local hardness. J Chem Phys 103:8548–8556
Ayers PW, De Proft F, Geerlings P (2007) A comparison of the utility of the shape function and electron density for predicting periodic properties: atomic ionization potentials. Phys Rev A 75:012508
De Proft F, Ayers PW, Sen K, Geerlings P (2004) On the importance of the “density per particle” (shape function) in the density functional theory. J Chem Phys 120:9969–9973
Ayers PW (2006) Information theory, the shape function, and the Hirshfeld atom. Theor Chem Accounts 115:370–378
Ayers PW (2000) Density per particle as a descriptor of coulombic systems. Proc Natl Acad Sci 97:1959–1964
Ayers PW, Cedillo A (2009) The shape function. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. Taylor and Francis, Boca Raton, p 269
Parr RG, Yang WT (1984) Density-functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049
Fuentealba P, Florez E, Tiznado W (2010) Topological analysis of the Fukui function. J Chem Theory Comput 6:1470–1478
Cardenas C, Tiznado W, Ayers PW, Fuentealba P (2011) The Fukui potential and the capacity of charge and the global hardness of atoms. J Phys Chem A 115:2325–2331
Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873
Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43:285–303
Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694
Ayers PW, Levy M (2000) Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity” by Parr RG, Yang W (1984). Theor Chem Account 103:353–360
Ayers PW, Yang WT, Bartolotti LJ (2009) Fukui function. In: Chattaraj PK (ed) Chemical reactivity theory: A density functional view. CRC Press, Boca Raton, pp 255–267
Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138
Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871
Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York
Yang W, Parr RG, Pucci R (1984) Electron density, Kohn–Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863
Michalak A, De Proft F, Geerlings P, Nalewajski RF (1999) Fukui functions from the relaxed Kohn-Sham orbitals. J Phys Chem A 103:762–771
Balawender R, Geerlings P (2005) DFT-based chemical reactivity indices in the Hartree Fock method. II. Hardness and Fukui function. J Chem Phys 123:124103
Flores-Moreno R, Köster AM (2008) Auxiliary density perturbation theory. J Chem Phys 128:134105
Flores-Moreno R, Melin J, Ortiz JV, Merino G (2008) Efficient calculation of analytic Fukui functions. J Chem Phys 129:224105
Flores-Moreno R (2010) Symmetry conservation in Fukui functions. J Chem Theory Comput 6:48
Yang W, Cohen AJ, De Proft F, Geerlings P (2012) Analytical evaluation of Fukui functions and real-space linear response function. J Chem Phys 136:144110
Dirac PAM (1928) The quantum theory of the electron. Proc R Soc Lond A 117:610–624
Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211
Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I: boron through neon, optimization technique and validation. Can J Phys 70:560–571
Andzelm J, Radzio E, Salahub DR (1985) Compact basis sets for LCAO-LSD calculations. Part I: method and bases for Sc to Zn. J Comput Chem 6:520–532
Andzelm J, Russo N, Salahub DR (1987) Ground and excited states of group IVA diatomics from local-spin-density calculations: model potentials for Si, Ge, and Sn. J Chem Phys 87:6562
Köster AM, Geudtner G, Calaminici P, Casida ME, Domínguez VD, Flores-Moreno R, Gamboa GU, Goursot A, Heine T, Ipatov A, Janetzko F, del Campo JM, Reveles JU, Vela A, Zuñiga-Gutierrez B, Salahub DR (2011) deMon2k, Version 3, The deMon developers, Cinvestav, México City. http://www.demon-software.com
Flores-Moreno R, Pineda-Urbina K, Gómez-Sandoval Z (2012) Sinapsis, Version XII-V, Sinapsis developers, Guadalajara. http://sinapsis.sourceforge.net
Acknowledgments
This work was financially supported by the CONACyT (CB 2009: 127362, CB 2008: 105721). KPU gratefully acknowledges CONACyT fellowship 229123. RDGM acknowledges support from the Mazda Foundation for Art and Science.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pineda-Urbina, K., Guerrero, R.D., Reyes, A. et al. Shape entropy’s response to molecular ionization. J Mol Model 19, 1677–1683 (2013). https://doi.org/10.1007/s00894-012-1725-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00894-012-1725-4
Keywords
- Electron delocalization
- Fukui function
- Shannon’s entropy
- Shape function