Skip to main content

Advertisement

Log in

Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The computations of the geometries, electronic structures, dipole moments and polarizabilities for indoline and triphenylamine (TPA) based dye sensitizers, including D102, D131, D149, D205, TPAR1, TPAR2, TPAR4, and TPAR5, were performed using density functional theory, and the electronic absorption properties were investigated via time-dependent density functional theory with polarizable continuum model for solvent effects. The population analysis indicates that the donating electron capability of TPA is better than that of indoline group. The reduction driving forces for the oxidized D131 and TPAR1 are slightly larger than that of other dyes because of their lower highest occupied molecular orbital level. The absorption properties and molecular orbital analysis suggest that the TPA and 4-(2,2diphenylethenyl)phenyl substituent indoline groups are effective chromophores in intramolecular charge transfer (IMCT), and they play an important role in sensitization of dye-sensitized solar cells (DSCs). The better performance of D205 in DSCs results from more IMCT excited states with larger oscillator strength and higher light harvesting efficiency. While for TPA dyes, the longer conjugate bridges generate the larger oscillator strength and light harvesting efficiency, and the TPAR1 and TPAR4 have larger free energy change for electron injection and dye regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oregan B, Gratzel M (1991) Nature 353:737–740

    Article  CAS  Google Scholar 

  2. Gratzel M (2001) Nature 414:338–344

    Article  CAS  Google Scholar 

  3. Gratzel M (2003) J Photochem Photobio C 4:145–153

    Article  CAS  Google Scholar 

  4. Nazeeruddin MK, Klein C, Liska P, Gratzel M (2005) Coord Chem Rev 249:1460–1467

    Article  CAS  Google Scholar 

  5. Li B, Wang L, Kang B, Wang P, Qiu Y (2006) Sol Energy Mater Sol Cells 90:549–573

    Article  CAS  Google Scholar 

  6. Gratzel M (2009) Acc Chem Res 42:1788–1798

    Article  CAS  Google Scholar 

  7. Mishra A, Fischer MKR, Bauerle P (2009) Angew Chem Int Ed 48:2474–2499

    Article  CAS  Google Scholar 

  8. Ning ZJ, Tian H (2009) Chem Commun :5483–5495

  9. Robertson N (2006) Angew Chem Int Ed 45:2338–2345

    Article  CAS  Google Scholar 

  10. Zakeeruddin SM, Gratzel M (2009) Adv Funct Mater 19:2187–2202

    Article  CAS  Google Scholar 

  11. Clifford JN, Martinez-Ferrero E, Viterisi A, Palomares E (2011) Chem Soc Rev 40:1635–1646

    Article  CAS  Google Scholar 

  12. Gratzel M (2005) Inorg Chem 44:6841–6851

    Article  Google Scholar 

  13. Nazeeruddin MK, Kay A, Rodicio I, Humphrybaker R, Muller E, Liska P, Vlachopoulos N, Gratzel M (1993) J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  14. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Gratzel M (2001) J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  15. Chen XY, Guo JH, Peng XJ, Guo M, Xu YQ, Shi L, Liang CL, Wang L, Gao YL, Sun SG, Cai SM (2005) J Photochem Photobio A 171:231–236

    Article  CAS  Google Scholar 

  16. Sayama K, Tsukagoshi S, Mori T, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2003) Sol Energy Mater Sol Cells 80:47–71

    Article  CAS  Google Scholar 

  17. Wu WJ, Hua JL, Jin YH, Zhan WH, Tian H (2008) Photochem Photobio Sci 7:63–68

    Article  CAS  Google Scholar 

  18. Chen YS, Li C, Zeng ZH, Wang WB, Wang XS, Zhang BW (2005) J Mater Chem 15:1654–1661

    Article  CAS  Google Scholar 

  19. Wang ZS, Li FY, Huang CH (2001) J Phys Chem B 105:9210–9217

    Article  CAS  Google Scholar 

  20. Liang M, Xu W, Cai FS, Chen PQ, Peng B, Chen J, Li ZM (2007) J Phys Chem C 111:4465–4472

    Article  CAS  Google Scholar 

  21. Shen P, Tang YH, Jiang SH, Chen HJ, Zheng XY, Wang XY, Zhao B, Tan ST (2011) Org Electron 12:125–135

    Article  CAS  Google Scholar 

  22. Cappel UB, Karlsson MH, Pschirer NG, Eickemeyer F, Schoneboom J, Erk P, Boschloo G, Hagfeldt A (2009) J Phys Chem C 113:14595–14597

    Article  CAS  Google Scholar 

  23. Jiao CJ, Zu NN, Huang KW, Wang P, Wu JS (2011) Org Lett 13:3652–3655

    Article  CAS  Google Scholar 

  24. Li C, Schoneboom J, Liu ZH, Pschirer NG, Erk P, Herrmann A, Mullen K (2009) Chem Eur J 15:878–884

    Article  CAS  Google Scholar 

  25. Li C, Yum JH, Moon SJ, Herrmann A, Eickemeyer F, Pschirer NG, Erk P, Schoeboom J, Mullen K, Gratzel M, Nazeeruddin MK (2008) Chemsuschem 1:615–618

    Article  CAS  Google Scholar 

  26. Tian H, Liu PH, Zhu WH, Gao EQ, Da-Jun WA, Cai SM (2000) J Mater Chem 10:2708–2715

    Article  CAS  Google Scholar 

  27. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) J Phys Chem B 107:597–606

    Article  CAS  Google Scholar 

  28. Koops SE, Barnes PRF, O’Regan BC, Durrant JR (2010) J Phys Chem C 114:8054–8061

    Article  CAS  Google Scholar 

  29. Li XG, Lu HJ, Wang SR, Guo JJ, Li J (2011) Prog Chem 23:569–588

    CAS  Google Scholar 

  30. Campbell WM, Burrell AK, Officer DL, Jolley KW (2004) Coord Chem Rev 248:1363–1379

    Article  CAS  Google Scholar 

  31. Hsieh CP, Lu HP, Chiu CL, Lee CW, Chuang SH, Mai CL, Yen WN, Hsu SJ, Diau EWG, Yeh CY (2010) J Mater Chem 20:1127–1134

    Article  CAS  Google Scholar 

  32. Imahori H, Umeyama T, Ito S (2009) Acc Chem Res 42:1809–1818

    Article  CAS  Google Scholar 

  33. Lee CW, Lu HP, Lan CM, Huang YL, Liang YR, Yen WN, Liu YC, Lin YS, Diau EWG, Yeh CY (2009) Chem Eur J 15:1403–1412

    Article  CAS  Google Scholar 

  34. Pasunooti KK, Song JL, Chai H, Amaladass P, Deng WQ, Liu XW (2011) J Photochem Photobio A 218:219–225

    Article  CAS  Google Scholar 

  35. Wu SL, Lu HP, Yu HT, Chuang SH, Chiu CL, Lee CW, Diau EWG, Yeh CY (2010) Energy Environ Sci 3:949–955

    Article  CAS  Google Scholar 

  36. Geiger T, Kuster S, Yum JH, Moon SJ, Nazeeruddin MK, Gratzel M, Nuesch F (2009) Adv Funct Mater 19:2720–2727

    Article  CAS  Google Scholar 

  37. Paek S, Choi H, Kim C, Cho N, So S, Song K, Nazeeruddin MK, Ko J (2011) Chem Commun 47:2874–2876

    Article  CAS  Google Scholar 

  38. Silvestri F, Lopez-Duarte I, Seitz W, Beverina L, Martinez-Diaz MV, Marks TJ, Guldi DM, Pagani GA, Torres T (2009) Chem. Commun : 4500–4502

  39. Cheng HM, Hsieh WF (2010) Nanotechnology 21: 485202 485202

  40. Kuang D, Uchida S, Humphry-Baker R, Zakeeruddin SM, Gratzel M (2008) Angew Chem Int Ed 47:1923–1927

    Article  CAS  Google Scholar 

  41. Zhang XH, Li C, Wang WB, Cheng XX, Wang XS, Zhang BW (2007) J Mater Chem 17:642–649

    Article  CAS  Google Scholar 

  42. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Science 334:629–634

    Article  CAS  Google Scholar 

  43. Horiuchi T, Miura H, Uchida S (2003) Chem Commun: 3036–3037

  44. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) J Am Chem Soc 126:12218–12219

    Article  CAS  Google Scholar 

  45. Dentani T, Kubota Y, Funabiki K, Jin J, Yoshida T, Minoura H, Miura H, Matsui M (2009) New J Chem 33:93–101

    Article  CAS  Google Scholar 

  46. Tanaka H, Takeichi A, Higuchi K, Motohiro T, Takata M, Hirota N, Nakajima J, Toyoda T (2009) Sol Energy Mater Sol Cells 93:1143–1148

    Article  CAS  Google Scholar 

  47. Ito S, Zakeeruddin SM, Humphry-Baker R, Liska P, Charvet R, Comte P, Nazeeruddin MK, Pechy P, Takata M, Miura H, Uchida S, Gratzel M (2006) Adv Mater 18:1202–1205

    Article  CAS  Google Scholar 

  48. Howie WH, Claeyssens F, Miura H, Peter LM (2008) J Am Chem Soc 130:1367–1375

    Article  CAS  Google Scholar 

  49. Snaith HJ, Petrozza A, Ito S, Miura H, Gratzel M (2009) Adv Funct Mater 19:1810–1818

    Article  CAS  Google Scholar 

  50. Zhang Z, Chen P, Murakami TN, Zakeeruddin SM, Gratzel M (2008) Adv Funct Mater 18:341–346

    Article  CAS  Google Scholar 

  51. Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Gratzel M (2008) Chem Commun: 5194–5196

  52. Jose R, Kumar A, Thavasi V, Fujihara K, Uchida S, Ramakrishna S (2008) Appl Phys Lett 93: 023125 023125

  53. Le Bahers T, Pauporte T, Scalmani G, Adamo C, Ciofini I (2009) Phys Chem Chem Phys 11:11276–11284

    Article  Google Scholar 

  54. Ning ZJ, Zhang Q, Wu WJ, Pei HC, Liu B, Tian H (2008) J Org Chem 73:3791–3797

    Article  CAS  Google Scholar 

  55. Preat J, Michaux C, Jacquemin D, Perpete EA (2009) J Phys Chem C 113:16821–16833

    Article  CAS  Google Scholar 

  56. Xu W, Peng B, Chen J, Liang M, Cai F (2008) J Phys Chem C 112:874–880

    Article  CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Lzmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Lyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Gaussian Inc, Wallingford, CT

    Google Scholar 

  58. Adamson RD, Dombroski JP, Gill PMW (1999) J Comput Chem 20:921–927

    Article  CAS  Google Scholar 

  59. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  60. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  61. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  62. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  63. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  64. Cossi M, Barone V (2000) J Phys Chem A 104:10614–10622

    Article  CAS  Google Scholar 

  65. Xu J, Wang L, Liang G, Bai Z, Wang L, Xu W, Shen X (2011) Spectrochim Acta Part A 78:287–293

    Article  Google Scholar 

  66. Xu J, Zhang H, Wang L, Liang G, Wang L, Shen X, Xu W (2010) Chem Monthly 141:549–555

    Article  CAS  Google Scholar 

  67. Xu J, Zhu L, Wang L, Liu L, Bai Z, Wang L, Xu W (2012) J Mol Model 18:1767–1777

    Article  CAS  Google Scholar 

  68. Zhang CR, Liu ZJ, Chen YH, Chen HS, Wu YZ, Yuan LH (2009) J Mol Struct(Theochem) 899:86–93

    Article  CAS  Google Scholar 

  69. Zhang CR, Liu ZJ, Chen YH, Chen HS, Wu YZ, Feng WJ, Wang DB (2010) Curr Appl Phys 10:77–83

    Article  CAS  Google Scholar 

  70. Zhang CR, Chen HS, Chen YH, Wei ZQ, Pu ZS (2008) Acta Phys Chim Sin 24:1353–1358

    Article  Google Scholar 

  71. Preat J, Michaux C, Jacquemin D, Perpète EA (2009) J Phys Chem C 113:16821–16833

    Article  CAS  Google Scholar 

  72. Zhang X, Zhang JJ, Xia YY (2008) J Photochem Photobio A 194:167–172

    Article  CAS  Google Scholar 

  73. De Angelis F, Fantacci S, Selloni A, Grätzel M, Nazeeruddin MK (2007) Nano Lett 7:3189–3195

    Article  Google Scholar 

  74. Wang ZS, Huang YY, Huang CH, Zheng J, Cheng HM, Tian SJ (2000) Synth Met 114:201–207

    Article  CAS  Google Scholar 

  75. Christiansen O, Gauss J, Stanton JF (1999) Chem Phys Lett 305:147–155

    Article  CAS  Google Scholar 

  76. Preat J, Jacquemin D, Wathelet V, André J-M, Perpète EA (2007) Chem Phys 335:177–186

    Article  CAS  Google Scholar 

  77. Marcus RA (1993) Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  78. Fan W, Tan D, Deng W-Q (2012) Chem Phys Chem 13:2051–2060

    Article  CAS  Google Scholar 

  79. Asbury JB, Wang Y-Q, Hao E, Ghosh HN, Lian T (2001) Res Chem Intermed 27:393–406

    Article  CAS  Google Scholar 

  80. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  81. Boschloo G, Hagfeldt A (2009) Acc Chem Res 42:1819–1826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work supported by the Basic Scientific Research Foundation for Gansu Universities of China (Grant No. 1210ZTC055), National Natural Science Foundation of China (Grant Nos. 11164016, 11164015), and scientific developmental foundation of Lanzhou University of Technology. The authors gratefully wish to appreciate the reviewers for reviewing the manuscript and making important suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-Rong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, CR., Liu, L., Zhe, JW. et al. Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells. J Mol Model 19, 1553–1563 (2013). https://doi.org/10.1007/s00894-012-1723-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1723-6

Keywords

Navigation