Skip to main content
Log in

The physico-chemical “anatomy” of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The biologically important tautomerization of the Hyp·Cyt, Hyp*·Thy and Hyp·Hyp base pairs to the Hyp*·Cyt*, Hyp·Thy* and Hyp*·Hyp* base pairs, respectively, by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ε = 4) corresponding to hydrophobic interfaces of protein–nucleic acid interactions by combining theoretical investigations at the B3LYP/6-311++G(d,p) level of QM theory with QTAIM topological analysis. Based on the sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), it was proved that the tautomerization through the DPT is concerted and asynchronous process for the Hyp·Cyt and Hyp*·Thy base pairs, while concerted and synchronous for the Hyp·Hyp homodimer. The continuum with ε = 4 does not affect qualitatively the course of the tautomerization reaction for all studied complexes. The nine key points along the IRC of the Hyp·Cyt↔Hyp*·Cyt* and Hyp*·Thy↔Hyp·Thy* tautomerizations and the six key points of the Hyp·Hyp↔Hyp*·Hyp* tautomerization have been identified and fully characterized. These key points could be considered as electron-topological “fingerprints” of concerted asynchronous (for Hyp·Cyt and Hyp*·Thy) or synchronous (for Hyp·Hyp) tautomerization process via the DPT. It was found, that in the Hyp*·Cyt*, Hyp·Thy*, Hyp·Hyp and Hyp*·Hyp* base pairs all H-bonds are significantly cooperative and mutually reinforce each other, while the C2H…O2 H-bond in the Hyp·Cyt base pair and the O6H…O4 H-bond in the Hyp*·Thy base pair behave anti-cooperatively, i.e., they become weakened, while two others become strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM, Washington DC

    Google Scholar 

  2. Auerbach C (1976) Mutation research: Problems, results, and perspectives. Wiley, New York

    Book  Google Scholar 

  3. Dellarco VL, Erickson RP, Lewis SE, Shelby MD (1995) Mutagenesis and human genetic disease: an introduction. Environ Mol Mutagen 25:2–6

    Article  CAS  Google Scholar 

  4. Brovarets’ OO, Kolomiets’ IM, Hovorun DM (2012) Elementary molecular mechanisms of the spontaneous point mutations in DNA: a novel quantum-chemical insight into the classical understanding. In: Tada T (ed) Quantum chemistry – molecules for innovations. Rijeka, In Tech Open Access, pp 59–102

    Google Scholar 

  5. Inge-Vechtomov SG (1989) Genetics and fundamentals of selection (Genetika s osnovami selektsii) (in Russian). Moscow, Vysshaya Shkola

    Google Scholar 

  6. Crick FHC (1966) Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    Article  CAS  Google Scholar 

  7. Karran P, Lindahl T (1980) Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry 19:6005–6011

    Article  CAS  Google Scholar 

  8. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  Google Scholar 

  9. Miao F, Bouziane M, O’Connor TR (1998) Interaction of the recombinant human methylpurine-DNA glycosylase (MPG protein) with oligodeoxyribonucleotides containing either hypoxanthine or abasic sites. Nucleic Acids Res 26:4034–4041

    Article  CAS  Google Scholar 

  10. Voet D, Voet JG (1995) Biochemistry. Wiley, New York

    Google Scholar 

  11. Munns ARI, Tollin P (1970) The crystal and molecular structure of inosine. Acta Crystallogr B26:1101–1113

    Google Scholar 

  12. Schmalle HW, Hanggi G, Dubler E (1988) Structure of hypoxanthine. Acta Crystallogr C44:732–736

    CAS  Google Scholar 

  13. Kamiya H, Miura H, Kato H, Nishimura S, Ohtsuka E (1992) Induction of mutation of a synthetic c-Ha-ras gene containing hypoxanthine. Cancer Res 52:1836–1839

    CAS  Google Scholar 

  14. Hang B, Singer B, Margison GP, Elder RH (1997) Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1, N6-ethenoadenine and hypoxanthine but not of 3, N4-ethenocytosine or 8-oxoguanine. Proc Natl Acad Sci USA 94:12869–12874

    Article  CAS  Google Scholar 

  15. Hill-Perkins M, Jones MD, Karran P (1986) Site-specific mutagenesis in vivo by single methylated or deaminated purine bases. Mutat Res 162:153–163

    Google Scholar 

  16. Lesley RR, Craig AW, Stacey DW (2007) A computational characterization of the hydrogen-bonding and stacking interactions of hypoxanthine. Phys Chem Chem Phys 9:497–509

    Article  Google Scholar 

  17. Rutledge LR, Wetmore SD (2012) A computational proposal for the experimentally observed discriminatory behavior of hypoxanthine, a weak universal nucleobase. Phys Chem Chem Phys 14:2743–2753

    Article  CAS  Google Scholar 

  18. Saparbaev M, Laval J (1994) Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci USA 91:5873–5877

    Article  CAS  Google Scholar 

  19. Schuster H (1960) The reaction of nitrous acid with deoxyribonucleic acid. Biochem Biophys Res Commun 2:320–323

    Article  Google Scholar 

  20. Sun X, Lee JK (2007) Acidity and proton affinity of hypoxanthine in the gas phase versus in solution: intrinsic reactivity and biological implications. J Org Chem 72:6548–6555

    Article  CAS  Google Scholar 

  21. Sun X, Lee JK (2010) The stability of DNA duplexes containing hypoxanthine (inosine): gas versus solution phase and biological implications. J Org Chem 75:1848–1854

    Article  CAS  Google Scholar 

  22. Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  CAS  Google Scholar 

  23. Hartman Z, Henrikson EN, Hartman PE, Cebula TA (1994) Molecular models that may account for nitrous acid mutagenesis in organisms containing double-stranded DNA. Environ Mol Mutagen 24:168–175

    Article  CAS  Google Scholar 

  24. Wuenschell GE, O’Connor TR, Termini J (2003) Stability, miscoding potential, and repair of 2'-deoxyxanthosine in DNA: implications for nitric oxide-induced mutagenesis. Biochemistry 42:3608–3616

    Article  CAS  Google Scholar 

  25. Brovarets’ OO, Hovorun DM (2012) Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis. J Biomol Struct Dynam. doi:10.1080/07391102.2012.715041

  26. Topal MD, Fresco JR (1976) Base pairing and fidelity in codon-anticodon interaction. Nature 263:289–293

    Article  CAS  Google Scholar 

  27. Brovarets’ OO, Hovorun DM (2012) Can tautomerization of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. J Biomol Struct Dynam. doi:10.1080/07391102.2012.755795

  28. Brovarets’ OO, Yurenko YP, Dubey IY, Hovorun DM (2012) Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. J Biomol Struct Dynam 29:1101–1109

    Google Scholar 

  29. Dwyer JJ, Gittis AG, Karp DA, Lattman EE, Spencer DS, Stites WE, García-Moreno EB (2000) High apparent dielectric constants in the interior of a protein reflect water penetration. Biophys J 79:1610–1620

    Article  CAS  Google Scholar 

  30. García-Moreno BE, Dwyer JJ, Gittis AG, Lattman EE, Spencer DS, Stites WE (1997) Experimental measurement of the effective dielectric in the hydrophobic core of a protein. Biophys Chem 64:211–224

    Article  Google Scholar 

  31. Bayley ST (1951) The dielectric properties of various solid crystalline proteins, amino acids and peptides. Trans Faraday Soc 47:509–517

    Article  CAS  Google Scholar 

  32. Dewar MJS, Storch DM (1985) Alternative view of enzyme reactions. Proc Natl Acad Sci USA 82:2225–2229

    Article  CAS  Google Scholar 

  33. Mertz EL, Krishtalik LI (2000) Low dielectric response in enzyme active site. Proc Natl Acad Sci USA 97:2081–2086

    Article  CAS  Google Scholar 

  34. Petrushka J, Sowers LC, Goodman M (1986) Comparison of nucleotide interactions in water, proteins, and vacuum: model for DNA polymerase fidelity. Proc Natl Acad Sci USA 83:1559–1562

    Article  Google Scholar 

  35. Lamsabhi AM, Mó O, Gutiérrez-Oliva S, Pérez P, Toro-Labbé A, Yáñez M (2009) The mechanism of double proton transfer in dimers of uracil and 2-thiouracil – the reaction force perspective. J Comput Chem 30:389–98

    Article  CAS  Google Scholar 

  36. Herrera B, Toro-Labbé A (2007) The role of reaction force and chemical potential in characterizing the mechanism of double proton transfer in the adenine − uracil complex. J Phys Chem A 111:5921–5926

    Article  CAS  Google Scholar 

  37. Kar T, Scheiner S (2004) Comparison of cooperativity in CH…O and OH…O hydrogen bonds. J Phys Chem A 108:9161–9168

    Article  CAS  Google Scholar 

  38. Ziółkowski M, Grabowski SJ, Leszczynski J (2006) Cooperativity in hydrogen-bonded interactions: ab initio and “atoms in molecules” analyses. J Phys Chem A 110:6514–6521

    Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Pople JA et al. (2010) GAUSSIAN 09 (Revision B.01), Gaussian Inc. Wallingford, CT

  40. Tirado-Rives J, Jorgensen WL (2008) Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput 4:297–306

    Article  CAS  Google Scholar 

  41. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  42. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  43. Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166:281–289

    Article  CAS  Google Scholar 

  44. Brovarets’ OO, Hovorun DM (2010) How stable are the mutagenic tautomers of DNA bases? Biopolym Cell 26:72–76

    Article  Google Scholar 

  45. Brovarets’ OO, Hovorun DM (2010) Stability of mutagenic tautomers of uracil and its halogen derivatives: the results of quantum-mechanical investigation. Biopolym Cell 26:295–298

    Article  Google Scholar 

  46. Brovarets’ OO, Hovorun DM (2010) Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine. Ukr Biochem J 82:55–60

    Google Scholar 

  47. Brovarets’ OO, Hovorun DM (2010) Molecular mechanisms of transitions induced by cytosine analogue: comparative quantum-chemical study. Ukr Biochem J 82:51–56

    Google Scholar 

  48. Brovarets’ OO, Hovorun DM (2010) Quantum-chemical investigation of the elementary molecular mechanisms of pyrimidine-purine transversions. Ukr Biochem J 82:57–67

    Google Scholar 

  49. Brovarets’ OO, Zhurakivsky RO, Hovorun DM (2010) Is there adequate ionization mechanism of the spontaneous transitions? Quantum-chemical investigation. Biopolym Cell 26:398–405

    Article  Google Scholar 

  50. Brovarets’ OO, Hovorun DM (2010) By how many characters is the genetic information written in DNA? Repts Natl Acad Sci Ukraine 6:175–179

    Google Scholar 

  51. Brovarets’ OO, Hovorun DM (2011) IR Vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: quantum-chemical study. Opt Spectrosc 111:750–757

    Article  Google Scholar 

  52. Brovarets’ OO, Hovorun DM (2011) Intramolecular tautomerization and the conformational variability of some classical mutagens – cytosine derivatives: quantum chemical study. Biopolym Cell 27:221–230

    Article  Google Scholar 

  53. Pelmenschikov A, Hovorun DM, Shishkin OV, Leszczynski J (2000) A density functional theory study of vibrational coupling between ribose and base rings of nucleic acids with ribosyl guanosine as a model system. J Chem Phys 113:5986–5990

    Article  CAS  Google Scholar 

  54. Shishkin OV, Pelmenschikov A, Hovorun DM, Leszczynski J (2000) Theoretical analysis of low-lying vibrational modes of free canonical 2΄-deoxyribonucleosides. Chem Phys 260:317–325

    Article  CAS  Google Scholar 

  55. Yurenko YP, Zhurakivsky RO, Ghomi M, Samijlenko SP, Hovorun DM (2007) Comprehensive conformational analysis of the nucleoside analogue 2′-β-deoxy-6-azacytidine by DFT and MP2 calculations. J Phys Chem B 111:6263–6271

    Article  CAS  Google Scholar 

  56. Yurenko YP, Zhurakivsky RO, Ghomi M, Samijlenko SP, Hovorun DM (2008) Ab initio comprehensive conformational analysis of 2′-deoxyuridine, the biologically significant DNA minor nucleoside, and reconstruction of its low-temperature matrix infrared spectrum. J Phys Chem B 112:1240–1250

    Google Scholar 

  57. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovorun DM (2011) Intramolecular CH · · · O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis. J Biomol Struct Dynam 29:51–65

    Article  CAS  Google Scholar 

  58. Matta CF (2010) How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules. J Comput Chem 31:1297–1311

    CAS  Google Scholar 

  59. Lozynski M, Rusinska-Roszak D, Mack H-G (1998) Hydrogen bonding and density functional calculations: the B3LYP approach as the shortest way to MP2 results. J Phys Chem A 102:2899–2903

    Article  CAS  Google Scholar 

  60. Yurenko YP, Zhurakivsky RO, Ghomi M, Samijlenko SP, Hovorun DM (2007) How many conformers determine the thymidine low-temperature matrix infrared spectrum? DFT and MP2 quantum chemical study. J Phys Chem B 111:9655–9663

    Article  CAS  Google Scholar 

  61. Samijlenko SP, Krechkivska OM, Kosach DA, Hovorun DM (2004) Transitions to high tautomeric states can be induced in adenine by interactions with carboxylate and sodium ions: DFT calculation data. J Mol Struct 708:97–104

    Article  CAS  Google Scholar 

  62. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  63. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  64. Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods to find transition states. Isr J Chem 33:449–454

    CAS  Google Scholar 

  65. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  66. Hratchian HP, Schlegel HB (2004) Accurate reaction paths using a Hessian based predictor-corrector integrator. J Chem Phys 120:9918–9924

    Article  CAS  Google Scholar 

  67. Hratchian HP, Schlegel HB (2005) Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In: Dykstra CE, Frenking G, Kim KS, Scuseria G (eds) Theory and applications of computational chemistry: The first 40 years. Elsevier, Amsterdam, pp 195–249

  68. Hratchian HP, Schlegel HB (2005) Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. J Chem Theory Comput 1:61–69

    Article  CAS  Google Scholar 

  69. Atkins PW (1998) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  70. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  71. Keith TA (2011) AIMAll (Version 11.12.19). Retrieved from http://aim.tkgristmill.com

  72. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  73. Mata I, Alkorta I, Espinosa E, Molins E (2011) Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chem Phys Lett 507:185–189

    Article  CAS  Google Scholar 

  74. Nikolaienko TY, Bulavin LA, Hovorun DM (2012) Bridging QTAIM with vibrational spectroscopy: the energy of intramolecular hydrogen bonds in DNA-related biomolecules. Phys Chem Chem Phys 14:7441–7447

    Article  CAS  Google Scholar 

  75. Iogansen AV (1999) Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochim Acta A Mol Biomol Spectrosc 55:1585–1612

    Article  Google Scholar 

  76. Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  77. Grabowski SJ (2011) Red- and blue-shifted hydrogen bonds: the bent rule from quantum theory of atoms in molecules perspective. J Phys Chem A 115:12789–12799

    Article  CAS  Google Scholar 

  78. Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology (International union of crystallography monographs on crystallography). Oxford University Press, New York

  79. Hovorun DM, Gorb L, Leszczynski J (1999) From the nonplanarity of the amino group to the structural nonrigidity of the molecule: A post-Hartree–Fock ab initio study of 2-aminoimidazole. Int J Quantum Chem 75:245–253

    Google Scholar 

  80. Gorb L, Podolyan Y, Dziekonski P, Sokalski WA, Leszczynski J (2004) Double-proton transfer in adenine − thymine and guanine − cytosine base pairs. A post-Hartree-Fock ab initio study. J Am Chem Soc 126:10119–10129

    Google Scholar 

  81. Hovorun DM, Kondratyuk IV, Zheltovsky NV (1995) Nucleotide bases as CH-acids. Biopolym Cell 11:15–20

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the State Fund for Fundamental Research of Ukraine within the Ukrainian-Russian (project № F40.4/039) and Ukrainian-Slovenian research bilateral projects for 2011-2012 years. O.O.B. was supported by the Grant of the President of Ukraine to support scientific research of young scientists for 2012 year from the State Fund for Fundamental Research of Ukraine (project № GP/F44/086) and by the Grant of the President of Ukraine for talented youth for 2012 year from the Ministry of Education and Science, Youth and Sports of Ukraine. Authors thank Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine for providing calculation resources and software. This work was performed using computational facilities of joint computer cluster of SSI “Institute for Single Crystals” and Institute for Scintillation Materials of National Academy of Sciences of Ukraine incorporated into Ukrainian National Grid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro M. Hovorun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6592 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brovarets’, O.O., Zhurakivsky, R.O. & Hovorun, D.M. The physico-chemical “anatomy” of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. J Mol Model 19, 4119–4137 (2013). https://doi.org/10.1007/s00894-012-1720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1720-9

Keywords

Navigation