Abstract
A stochastic exploration of the quantum conformational spaces in the microsolvation of divalent cations with explicit consideration of up to six solvent molecules [Mg (H 2 O) n )]2+, (n = 3, 4, 5, 6) at the B3LYP, MP2, CCSD(T) levels is presented. We find several cases in which the formal charge in Mg2+ causes dissociation of water molecules in the first solvation shell, leaving a hydroxide ion available to interact with the central cation, the released proton being transferred to outer solvation shells in a Grotthus type mechanism; this particular finding sheds light on the capacity of Mg2+ to promote formation of hydroxide anions, a process necessary to regulate proton transfer in enzymes with exonuclease activity. Two distinct types of hydrogen bonds, scattered over a wide range of distances (1.35–2.15 Å) were identified. We find that in inner solvation shells, where hydrogen bond networks are severely disturbed, most of the interaction energies come from electrostatic and polarization+charge transfer, while in outer solvation shells the situation approximates that of pure water clusters.

Water dissociation in the first solvation shell is observed only for [Mg(H2O)n]2+ clusters. The dissociated proton is then transferred to higher solvation shells via a Grotthus type mechanism
This is a preview of subscription content, access via your institution.









References
Furukawa K, Ohashi K, Koga N, Imamura T, Judai K, Nishi N, Sekiya H (2011) Chem Phys Lett 508:202
Neff D, Simmons J (2008) Int J Mass Spectrom 277:166
Lei X, Pan BJ (2010) Phys Chem A 114:7595
Romero J, Reyes A, David J, Restrepo A (2011) Phys Chem Chem Phys 13:15264
Miller D, Lisy JJ (2008) Am Chem Soc 130:15381
Miller D, Lisy JJ (2008) Am Chem Soc 130:15393
da Silva F, Williams R (1991) The biological chemistry of the elements. Clarendon, Oxford
Cowan JA (1995) Biological chemistry of magnesium. VCH, New York
Cowan JA (1998) Inorg Chim Acta 275:24
Cowan JA (2002) BioMetals 15:225
Sigel RKO, Pyle AM (2007) Chem Rev 107:97
Boero M, Terakura K, Tateno MJ (2002) Am Chem Soc 124:8949
Boero M, Tateno M, Terakura K, Oshiyama AJ (2005) Chem Theory Comput 1:925
Ho M, Vivo M, Peraro M, Klein MLJ (2010) Am Chem Soc 132:13702
Park JM, Boero MJ (2010) Phys Chem B 114:11102
Rodriguez-Cruz S, Jockusch R, Williams RJ (1999) Am Chem Soc 121:8898
Rao J, Dinadayalane T, Leszczynski J, Sastry GJ (2008) Phys Chem A 112:12944
Pye C, Rudolph WJ (1998) Phys Chem A 102:9933
Carl D, Moision R, Armentrout P (2007) Int J Mass Spectrom 265:308
Glendening ED, Feller DJ (1996) Phys Chem 100:4790
Merrill GN, Webb SP, Donald BBJ (2003) Phys Chem A 107:386
Caminiti R, Licheri G, Piccauga G, Pinna G (1977) Chem Phys Lett 47:275
Megyes T, Grósz T, Radnai T, Bakó I, Pálinkás GJ (2004) Phys Chem A 108:7261
Jalilehvand F, Spangberg D, Lindqvist-Reis P, Hermansson K, Persson I, Sandström M (2000) J Am Chem Soc 123:431
Fulton G, Heald S, Badyal Y, Simonson JJ (2003) Phys Chem A 107:4688
Bush M, Saykally R, Williams E (2007) Chem Phys Chem 8:2245
Lightstone F, Schwegler E, Hood R, Gygi F, Galli G (2001) Chem Phys Lett 343:549
Markham G, Glusker J, Bock CJ (2002) Phys Chem B 106:5118
Naor M, Nostrand K, Dellago C (2003) Chem Phys Lett 369:159
Tongraar A, Liedl K, Rode BJ (1997) Phys Chem A 101:6299
Schewnk C, Loeffler H, Rode BJ (2001) Chem Phys 115:10808
Pavlov M, Siegbahn P, Sandström MJ (1998) Phys Chem A 102:219
Buckingham A, Bene J, McDowell S (2008) Chem Phys Lett 463:1
Rao J, Zipse H, Sastry GJ (2009) Phys Chem B 113:7225
Neela J, Mahadevi A, Sastry GJ (2010) Phys Chem B 114:17162
Pérez J, Hadad C, Restrepo A (2008) Int J Quantum Chem 108:1653
Pérez J, Flórez E, Hadad C, Fuentealba P, Restrepo AJ (2008) Phys Chem A 112:5749
Pérez J, Restrepo A (2008) ASCEC V–02: Annealing Simulado con Energía Cuántica. Property, development and implementation: Grupo de Química–Física Teórica, Instituto de Química, Universidad de Antioquia: Medellín, Colombia
David J, Guerra D, Hadad C, Restrepo AJ (2010) Phys Chem A 114:10726
Yepes D, Kirk S, Jenkins S, Restrepo A (2012) J Mol Mod 18:4171
Ramírez F, Hadad C, Guerra D, David J, Restrepo A (2011) Chem Phys Lett 507:229
Hincapié G, Acelas N, Castaño M, David J, Restrepo AJ (2010) Phys Chem A 114:7809
Jenkins S, Restrepo A, David J, Yin D, Kirk S (2011) Phys Chem Chem Phys 13:11644
Murillo J, David J, Restrepo A (2010) Phys Chem Chem Phys 12:10963
David J, Guerra D, Restrepo AJ (2009) Phys Chem A 113:10167
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford
Su P, Li HJ (2009) Chem Phys 131:014102
Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347
de Grotthus C (1806) Ann Chim 58:54
Limbach H, Tolstoy P, Pérez-Hernández N, Gou J, Shemderovich J, Denisvo G (2009) Isr J Chem 49:199
Taketsugu T, Wales D (2002) Mol Phys 100:2793
Hashimoto K, Morokuma KJ (1994) Am Chem Soc 116:11436
Hashimoto K, Kamimoto TJ (1998) Am Chem Soc 120:3560
Acknowledgments
Partial financial support for this work was provided by Colciencias (grant CT 457–2009); The Research Office of University of Medellín, project 626, and Comite para el desarrollo de la investigacion (CODI) office, Universidad de Antioquia.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
Cartesian coordinates for all optimized cluster geometries reported in this work. (PDF 46 kb)
Rights and permissions
About this article
Cite this article
Gonzalez, J.D., Florez, E., Romero, J. et al. Microsolvation of Mg2+, Ca2+: strong influence of formal charges in hydrogen bond networks. J Mol Model 19, 1763–1777 (2013). https://doi.org/10.1007/s00894-012-1716-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00894-012-1716-5
Keywords
- Hydrogen bonding
- Microsolvation of cations
- Stochastic optimization