Skip to main content
Log in

Microsolvation of Mg2+, Ca2+: strong influence of formal charges in hydrogen bond networks

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A stochastic exploration of the quantum conformational spaces in the microsolvation of divalent cations with explicit consideration of up to six solvent molecules [Mg (H 2 O) n )]2+, (n = 3, 4, 5, 6) at the B3LYP, MP2, CCSD(T) levels is presented. We find several cases in which the formal charge in Mg2+ causes dissociation of water molecules in the first solvation shell, leaving a hydroxide ion available to interact with the central cation, the released proton being transferred to outer solvation shells in a Grotthus type mechanism; this particular finding sheds light on the capacity of Mg2+ to promote formation of hydroxide anions, a process necessary to regulate proton transfer in enzymes with exonuclease activity. Two distinct types of hydrogen bonds, scattered over a wide range of distances (1.35–2.15 Å) were identified. We find that in inner solvation shells, where hydrogen bond networks are severely disturbed, most of the interaction energies come from electrostatic and polarization+charge transfer, while in outer solvation shells the situation approximates that of pure water clusters.

Water dissociation in the first solvation shell is observed only for [Mg(H2O)n]2+ clusters. The dissociated proton is then transferred to higher solvation shells via a Grotthus type mechanism

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Furukawa K, Ohashi K, Koga N, Imamura T, Judai K, Nishi N, Sekiya H (2011) Chem Phys Lett 508:202

    Article  CAS  Google Scholar 

  2. Neff D, Simmons J (2008) Int J Mass Spectrom 277:166

    Article  CAS  Google Scholar 

  3. Lei X, Pan BJ (2010) Phys Chem A 114:7595

    Article  CAS  Google Scholar 

  4. Romero J, Reyes A, David J, Restrepo A (2011) Phys Chem Chem Phys 13:15264

    Article  CAS  Google Scholar 

  5. Miller D, Lisy JJ (2008) Am Chem Soc 130:15381

    Article  CAS  Google Scholar 

  6. Miller D, Lisy JJ (2008) Am Chem Soc 130:15393

    Article  CAS  Google Scholar 

  7. da Silva F, Williams R (1991) The biological chemistry of the elements. Clarendon, Oxford

    Google Scholar 

  8. Cowan JA (1995) Biological chemistry of magnesium. VCH, New York

    Google Scholar 

  9. Cowan JA (1998) Inorg Chim Acta 275:24

    Article  Google Scholar 

  10. Cowan JA (2002) BioMetals 15:225

    Article  CAS  Google Scholar 

  11. Sigel RKO, Pyle AM (2007) Chem Rev 107:97

    Article  CAS  Google Scholar 

  12. Boero M, Terakura K, Tateno MJ (2002) Am Chem Soc 124:8949

    Article  CAS  Google Scholar 

  13. Boero M, Tateno M, Terakura K, Oshiyama AJ (2005) Chem Theory Comput 1:925

    Article  CAS  Google Scholar 

  14. Ho M, Vivo M, Peraro M, Klein MLJ (2010) Am Chem Soc 132:13702

    Article  CAS  Google Scholar 

  15. Park JM, Boero MJ (2010) Phys Chem B 114:11102

    Article  CAS  Google Scholar 

  16. Rodriguez-Cruz S, Jockusch R, Williams RJ (1999) Am Chem Soc 121:8898

    Article  CAS  Google Scholar 

  17. Rao J, Dinadayalane T, Leszczynski J, Sastry GJ (2008) Phys Chem A 112:12944

    Article  CAS  Google Scholar 

  18. Pye C, Rudolph WJ (1998) Phys Chem A 102:9933

    Article  CAS  Google Scholar 

  19. Carl D, Moision R, Armentrout P (2007) Int J Mass Spectrom 265:308

    Article  CAS  Google Scholar 

  20. Glendening ED, Feller DJ (1996) Phys Chem 100:4790

    Article  CAS  Google Scholar 

  21. Merrill GN, Webb SP, Donald BBJ (2003) Phys Chem A 107:386

    Article  CAS  Google Scholar 

  22. Caminiti R, Licheri G, Piccauga G, Pinna G (1977) Chem Phys Lett 47:275

    Article  CAS  Google Scholar 

  23. Megyes T, Grósz T, Radnai T, Bakó I, Pálinkás GJ (2004) Phys Chem A 108:7261

    Article  CAS  Google Scholar 

  24. Jalilehvand F, Spangberg D, Lindqvist-Reis P, Hermansson K, Persson I, Sandström M (2000) J Am Chem Soc 123:431

    Article  Google Scholar 

  25. Fulton G, Heald S, Badyal Y, Simonson JJ (2003) Phys Chem A 107:4688

    Article  CAS  Google Scholar 

  26. Bush M, Saykally R, Williams E (2007) Chem Phys Chem 8:2245

    Article  CAS  Google Scholar 

  27. Lightstone F, Schwegler E, Hood R, Gygi F, Galli G (2001) Chem Phys Lett 343:549

    Article  CAS  Google Scholar 

  28. Markham G, Glusker J, Bock CJ (2002) Phys Chem B 106:5118

    Article  CAS  Google Scholar 

  29. Naor M, Nostrand K, Dellago C (2003) Chem Phys Lett 369:159

    Article  CAS  Google Scholar 

  30. Tongraar A, Liedl K, Rode BJ (1997) Phys Chem A 101:6299

    Article  CAS  Google Scholar 

  31. Schewnk C, Loeffler H, Rode BJ (2001) Chem Phys 115:10808

    Google Scholar 

  32. Pavlov M, Siegbahn P, Sandström MJ (1998) Phys Chem A 102:219

    Article  CAS  Google Scholar 

  33. Buckingham A, Bene J, McDowell S (2008) Chem Phys Lett 463:1

    Article  CAS  Google Scholar 

  34. Rao J, Zipse H, Sastry GJ (2009) Phys Chem B 113:7225

    Article  CAS  Google Scholar 

  35. Neela J, Mahadevi A, Sastry GJ (2010) Phys Chem B 114:17162

    Article  CAS  Google Scholar 

  36. Pérez J, Hadad C, Restrepo A (2008) Int J Quantum Chem 108:1653

    Article  Google Scholar 

  37. Pérez J, Flórez E, Hadad C, Fuentealba P, Restrepo AJ (2008) Phys Chem A 112:5749

    Article  Google Scholar 

  38. Pérez J, Restrepo A (2008) ASCEC V–02: Annealing Simulado con Energía Cuántica. Property, development and implementation: Grupo de Química–Física Teórica, Instituto de Química, Universidad de Antioquia: Medellín, Colombia

  39. David J, Guerra D, Hadad C, Restrepo AJ (2010) Phys Chem A 114:10726

    Article  CAS  Google Scholar 

  40. Yepes D, Kirk S, Jenkins S, Restrepo A (2012) J Mol Mod 18:4171

    Google Scholar 

  41. Ramírez F, Hadad C, Guerra D, David J, Restrepo A (2011) Chem Phys Lett 507:229

    Article  Google Scholar 

  42. Hincapié G, Acelas N, Castaño M, David J, Restrepo AJ (2010) Phys Chem A 114:7809

    Article  Google Scholar 

  43. Jenkins S, Restrepo A, David J, Yin D, Kirk S (2011) Phys Chem Chem Phys 13:11644

    Article  CAS  Google Scholar 

  44. Murillo J, David J, Restrepo A (2010) Phys Chem Chem Phys 12:10963

    Article  CAS  Google Scholar 

  45. David J, Guerra D, Restrepo AJ (2009) Phys Chem A 113:10167

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford

    Google Scholar 

  47. Su P, Li HJ (2009) Chem Phys 131:014102

    Google Scholar 

  48. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  49. de Grotthus C (1806) Ann Chim 58:54

    Google Scholar 

  50. Limbach H, Tolstoy P, Pérez-Hernández N, Gou J, Shemderovich J, Denisvo G (2009) Isr J Chem 49:199

    Article  CAS  Google Scholar 

  51. Taketsugu T, Wales D (2002) Mol Phys 100:2793

    Article  CAS  Google Scholar 

  52. Hashimoto K, Morokuma KJ (1994) Am Chem Soc 116:11436

    Article  CAS  Google Scholar 

  53. Hashimoto K, Kamimoto TJ (1998) Am Chem Soc 120:3560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partial financial support for this work was provided by Colciencias (grant CT 457–2009); The Research Office of University of Medellín, project 626, and Comite para el desarrollo de la investigacion (CODI) office, Universidad de Antioquia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albeiro Restrepo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Cartesian coordinates for all optimized cluster geometries reported in this work. (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, J.D., Florez, E., Romero, J. et al. Microsolvation of Mg2+, Ca2+: strong influence of formal charges in hydrogen bond networks. J Mol Model 19, 1763–1777 (2013). https://doi.org/10.1007/s00894-012-1716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1716-5

Keywords

Navigation