Skip to main content
Log in

Perspectives on the reaction force constant

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A synchronous, concerted chemical process is rigorously divided by the reaction force F(R), the negative gradient of V(R), into “reactant” and “product” regions which are dominated by structural changes and an intervening “transition” region which is electronically intensive. The reaction force constant κ(R), the second derivative of V(R), is negative throughout the transition region, not just at the nominal transition state, at which κ(R) has a minimum. This is consistent with experimental evidence that there is a transition region, not simply a specific point. We show graphically that significant nonsynchronicity in the process is associated with the development of a maximum of κ(R) in the transition region, which increases as the process becomes more nonsynchronous. (We speculate that for a nonconcerted process this maximum is actually positive.) Thus, κ(R) can serve as an indicator of the level of nonsynchronicity.

Profiles of potential energy V(R), reaction force F(R), and reaction force constant κ(R) along the intrinsic reaction coordinate R for a nonsynchronous concerted chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toro-Labbé A (1999) J Phys Chem A 103:4398–4403

    Article  Google Scholar 

  2. Jaque P, Toro-Labbé A, Politzer P, Geerlings P (2008) Chem Phys Lett 456:135–140

    Article  CAS  Google Scholar 

  3. Murray JS, Lane P, Göbel M, Klapötke TM, Politzer P (2009) Theor Chem Acc 124:355–363

    Article  CAS  Google Scholar 

  4. Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2007) Mol Phys 105:2619–2625

    Article  Google Scholar 

  5. Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Murray JS (2012) Adv Quantum Chem 64:189–209

    Article  CAS  Google Scholar 

  6. Politzer P, Burda JV, Concha MC, Lane P, Murray JS (2006) J Phys Chem A 110:756–761

    Article  CAS  Google Scholar 

  7. Kraka E, Cremer D (2010) Acc Chem Res 43:591–601

    Article  CAS  Google Scholar 

  8. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  9. Politzer P, Reimers JR, Murray JS, Toro-Labbé A (2010) J Phys Chem Lett 1:2858–2862

    Article  CAS  Google Scholar 

  10. Evans MG, Polanyi M (1938) Trans Faraday Soc 34:11–23

    Article  CAS  Google Scholar 

  11. Dewar MJS (1984) J Am Chem Soc 106:209–219

    Article  CAS  Google Scholar 

  12. Leffler JE (1953) Science 117:340–341

    Article  CAS  Google Scholar 

  13. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  14. Nagase S, Morokuma K (1978) J Am Chem Soc 100:1666–1672

    Article  CAS  Google Scholar 

  15. Bickelhaupt FM (1999) J Comput Chem 20:114–128

    Article  CAS  Google Scholar 

  16. Ess DH, Houk KN (2008) J Am Chem Soc 130:10187–10198

    Article  CAS  Google Scholar 

  17. Polanyi JC, Zewail AH (1995) Acc Chem Res 28:119–132

    Article  CAS  Google Scholar 

  18. Zewail AH (2000) J Phys Chem A 104:5660–5694

    Article  CAS  Google Scholar 

  19. Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2009) J Mol Model 15:707–710

    Article  Google Scholar 

  20. Carey FA, Sundberg RJ (1984) Advanced organic chemistry, part A: structure and mechanisms, 2nd edn. Plenum, New York

  21. Yepes D, Murray JS, Santos JC, Toro-Labbé A, Politzer P, Jaque P (2012) J Mol Model. doi:10.1007/s00894-012-1475-3

  22. Yepes D, Murray JS, Politzer P, Jaque P (2012) Phys Chem Chem Phys 14:11125–11134

    Article  CAS  Google Scholar 

  23. Labet V, Morell C, Toro-Labbé A, Grand A (2010) Phys Chem Chem Phys 12:4142–4151

    Article  CAS  Google Scholar 

  24. Sauer J, Sustmann R (1980) Angew Chem Int Ed 19:779–807

    Article  Google Scholar 

  25. Houk KN, González J, Li Y (1995) Acc Chem Res 28:81–90

    Article  CAS  Google Scholar 

  26. Xu L, Doubleday CE, Houk KN (2010) J Am Chem Soc 132:3029–3037

    Article  CAS  Google Scholar 

  27. Moyano A, Rios R (2011) Chem Rev 111:4703–4832

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Fondo Nacional de Desarrollo Científico y Tecnológico de Chile (FONDECYT), grant number 1100291 through the project N° 1100291. P.J. thanks the Universidad Andres Bello for continuous support of his research group.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Politzer or Pablo Jaque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politzer, P., Murray, J.S. & Jaque, P. Perspectives on the reaction force constant. J Mol Model 19, 4111–4118 (2013). https://doi.org/10.1007/s00894-012-1713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1713-8

Keywords

Navigation