Skip to main content
Log in

On the exponential model for energy with respect to number of electrons

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using an exponential model for the variation in energy with respect to the number of electrons it is shown that, within the model, the hardness, softness, electrophilicity and other global parameters connected to higher order derivatives follow an equalization principle after a molecule is formed from two separated species. Two generalizations of the model are also discussed, one of which presents discontinuity of the chemical potential at integer values of N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  2. Chermette H (1998) Density functional theory: a powerful tool for theoretical studies in coordination chemistry. Coord Chem Rev 180:699–721

    Article  Google Scholar 

  3. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quant Chem 101:520–534

    Article  CAS  Google Scholar 

  4. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  5. Gazquez J (2008) Perspectives on density functional theory of chemical reactivity. J Mex Chem Soc 52(1):3–10

    CAS  Google Scholar 

  6. Liu S-B (2009) Conceptual density functional theory and some recent developments. Acta Phys Chim Sinica 25(03):590–600

    CAS  Google Scholar 

  7. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  8. Mulliken RS (1934) A new electroaffinity scale: together with data on states and an ionization potential and electron affinities. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  9. Fuentealba P, Parr RG (1991) Higher-order derivatives in density-functional theory, especially the hardness derivative. J Chem Phys 94:5559–5564

    Article  CAS  Google Scholar 

  10. Liu SB, Parr RG (1997) Second-order density-functional description of molecules and chemical changes. J Chem Phys 106(13):5578–5586

    Article  CAS  Google Scholar 

  11. Fuentealba P, Chamorro E, Cardenas C (2007) Further exploration of the Fukui function, hardness, and other reactivity indices and its relationships within the Kohn-Sham scheme. Int J Quant Chem 107:37–45

    Article  CAS  Google Scholar 

  12. Geerlings P, De Proft F (2008) Conceptual DFT: the chemical relevance of higher response functions. Phys Chem Chem Phys 10(21):3028–3042

    Article  CAS  Google Scholar 

  13. Cardenas C, Echegaray E, Chakraborty D, Anderson JSM, Ayers PW (2009) Relationships between the third-order reactivity indicators in chemical density-functional theory. J Chem Phys 130(24):244105

    Article  Google Scholar 

  14. Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  15. Chan GKL (1999) A fresh look at ensembles: derivative discontinuities in density functional theory. J Chem Phys 110:4710–4723

    Article  CAS  Google Scholar 

  16. Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175

    Article  CAS  Google Scholar 

  17. Cohen MH, Wasserman A (2003) Revisiting N-continuous density-functional theory: chemical reactivity and “atoms” in “molecules”. Israel J Chem 43:219–227

    Article  CAS  Google Scholar 

  18. Cohen MH, Wasserman A (2007) On the foundations of chemical reactivity theory. J Phys Chem A 111:2229–2242

    Article  CAS  Google Scholar 

  19. Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43(1):285–303

    Article  CAS  Google Scholar 

  20. Cohen AJ, Mori-Sanchez P, Yang WT (2008) Insights into current limitations of density functional theory. Science 321(5890):792–794

    Article  CAS  Google Scholar 

  21. Cohen AJ, Mori-Sanchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112(1):289–320

    Article  CAS  Google Scholar 

  22. Yang W, Cohen AJ, Mori-Sanchez P (2012) Derivative discontinuity, bandgap and lowest unoccupied molecular orbital in density functional theory. J Chem Phys 136(20):204111

    Article  Google Scholar 

  23. Ayers PW (2007) On the electronegativity nonlocality paradox. Theor Chem Acc 118:371–381

    Article  CAS  Google Scholar 

  24. Chattaraj PK, Giri S, Duley S (2010) Electrophilicity equalization principle. J Phys Chem Lett 1(7):1064–1067

    Article  CAS  Google Scholar 

  25. Parr RG, Bartolotti LJ (1982) On the geometric mean principle for electronegativity equalization. J Am Chem Soc 104:3801–3803

    Article  CAS  Google Scholar 

  26. Von Szentpály L (2000) Modeling the charge dependence of total energy and its relevance to electrophilicity. Int J Quant Chem 76(2):222–234

    Article  Google Scholar 

  27. Sanderson RT (1951) An interpretation of bond lengths and a classification of bonds. Science 114:670–672

    Article  CAS  Google Scholar 

  28. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  29. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  30. Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–190

    Article  CAS  Google Scholar 

  31. Parr RG, Von Szentpaly L, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  32. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  33. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  34. Nalewajski RF (1985) A study of electronegativity equalization. J Chem Phys 89:2831–2837

    Article  CAS  Google Scholar 

  35. Mortier WJ (1987) Electronegativity equalization and its applications. Struct Bond 66:125–143

    Article  CAS  Google Scholar 

  36. Itskowitz P, Berkowitz ML (1997) Chemical potential equalization principle: direct approach from density functional theory. J Phys Chem A 101:5687–5691

    Article  CAS  Google Scholar 

  37. Nalewajski RF (1998) On the chemical potential/electronegativity equalization in density functional theory. Pol J Chem 72(7, Suppl):1763–1778

    CAS  Google Scholar 

  38. Bultinck P, Carbo-Dorca R (2002) Algebraic relationships between conceptual DFT quantities and the electronegativity equalization hardness matrix. Chem Phys Lett 364:357–362

    Article  CAS  Google Scholar 

  39. Ayers PW, Parr RG (2008) Local hardness equalization: exploiting the ambiguity. J Chem Phys 128:184108

    Article  Google Scholar 

  40. Berkowitz M, Ghosh SK, Parr RG (1985) On the concept of local hardness in chemistry. J Am Chem Soc 107:6811–6814

    Article  CAS  Google Scholar 

  41. Baekelandt BG, Cedillo A, Parr RG (1995) Reactivity indexes and fluctuation formulas in density- functional theory - isomorphic ensembles and a new measure of local hardness. J Chem Phys 103:8548–8556

    Article  CAS  Google Scholar 

  42. Langenaeker W, Deproft F, Geerlings P (1995) Development of local hardness related reactivity indexes - their application in a study of the Se at monosubstituted benzenes within the hsab context. J Phys Chem 99:6424–6431

    Article  CAS  Google Scholar 

  43. Chattaraj PK, Roy DR, Geerlings P, Torrent-Sucarrat M (2007) Local hardness: a critical account. Theor Chem Acc 118:923–930

    Article  CAS  Google Scholar 

  44. Torrent-Sucarrat M, De Proft F, Ayers PW, Geerlings P (2010) On the applicability of local softness and hardness. Phys Chem Chem Phys 12(5):1072–1080

    Article  CAS  Google Scholar 

  45. Cardenas C, Tiznado W, Ayers PW, Fuentealba P (2011) The Fukui potential and the capacity of charge and the global hardness of atoms. J Phys Chem A 115(11):2325–2331

    Article  CAS  Google Scholar 

  46. Cuevas-Saavedra R, Rabi N, Ayers PW (2011) The unconstrained local hardness: an intriguing quantity, beset by problems. Phys Chem Chem Phys 13(43):19594

    Article  CAS  Google Scholar 

  47. Islam N, Ghosh DC (2012) On the electrophilic character of molecules through its relation with electronegativity and chemical hardness. Int J Mol Sci 13(2):2160–2175

    Article  CAS  Google Scholar 

  48. Cardenas C, Ayers P, De Proft F, Tozer D, Geerlings P (2011) Should negative electron affinities be used for evaluating the chemical hardness? Phys Chem Chem Phys 13(6):2285–2293

    Article  CAS  Google Scholar 

  49. von Szentpály L (2011) Ruling out any electrophilicity equalization principle. J Phys Chem A 115(30):8528–8531

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) through grant 11090013, and also by the Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia. The authors also acknowledge Project ICM-P10-003-F, CILIS, granted by Fondo de Innovación para la Competitividad, del Ministerio de Economía, Fomento y Turismo, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Fuentealba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentealba, P., Cárdenas, C. On the exponential model for energy with respect to number of electrons. J Mol Model 19, 2849–2853 (2013). https://doi.org/10.1007/s00894-012-1708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1708-5

Keywords

Navigation