Open carbon frameworks - a search for optimal geometry for hydrogen storage


Properties of a new class of hypothetical high-surface-area porous carbons (open carbon frameworks) have been discussed. The limits of hydrogen adsorption in these carbon porous structures have been analyzed in terms of competition between increasing surface accessible for adsorption and the lowering energy of adsorption. From an analysis of an analytical model and simulations of adsorption the physical limits of hydrogen adsorption have been defined: (i) higher storage capacities in slit-shaped pores can be obtained by fragmentation/truncation of graphene sheets into nano-metric elements which creates surface areas in excess of 2600 m2/g, the surface area for infinite graphene sheets; (ii) the positive influence of increasing surface area is compensated by the decreasing energy of adsorption in the carbon scaffolds of nano-metric sizes; (iii) for open carbon frameworks (OCF) built from coronene and benzene molecules with surface areas 6500 m2 g-1, we find an impressive excess adsorption of 75–110 g H2/kg C at 77 K, and high storage capacity of 110–150 g H2/kg C at 77 K and 100 bar; (iv) the new OCF, if synthesized and optimized, could lead to required hydrogen storage capacity for mobile applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    U.S. Department of Energy’s Energy Efficiency and Renewable Energy Website (2010)

  2. 2.

    Kuchta B, Firlej L, Pfeifer P, Wexler C (2010) Numerical estimation of hydrogen storage limits in carbon-based nanospaces. Carbon 48(1):223–231

    Article  CAS  Google Scholar 

  3. 3.

    Jena P (2011) Materials for hydrogen storage: past, present, and future. J Phys Chem Lett 2(3):206–211. doi:10.1021/jz1015372

    Article  CAS  Google Scholar 

  4. 4.

    Burress J, Kraus M, Beckner M, Cepel R, Suppes G, Wexler C, Pfeifer P (2009) Hydrogen storage in engineered carbon nanospaces. Nanotechnology 20(20):204026

    Article  Google Scholar 

  5. 5.

    Froudakis GE (2011) Hydrogen storage in nanotubes and nanostructures. Mater Today 14(7–8):324–328

    Article  CAS  Google Scholar 

  6. 6.

    Bhatia SK, Myers AL (2006) Optimum conditions for adsorptive storage. Langmuir 22(4):1688–1700. doi:10.1021/la0523816

    Article  CAS  Google Scholar 

  7. 7.

    Panella B, Hirscher M, Roth S (2005) Hydrogen adsorption in different carbon nanostructures. Carbon 43(10):2209–2214

    Article  CAS  Google Scholar 

  8. 8.

    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 300(5622):1127–1129. doi:10.1126/science.1083440

    Article  CAS  Google Scholar 

  9. 9.

    Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414(6861):353–358

    Article  CAS  Google Scholar 

  10. 10.

    Benard P, Chahine R (2001) Determination of the adsorption isotherms of hydrogen on activated carbons above the critical temperature of the adsorbate over wide temperature and pressure ranges. Langmuir 17(6):1950–1955. doi:10.1021/la001381x

    Article  CAS  Google Scholar 

  11. 11.

    Wang Q, Johnson JK (1998) Hydrogen adsorption on graphite and in carbon slit pores from path integral simulations. Mol Phys 95:299–309

    Article  CAS  Google Scholar 

  12. 12.

    Zubizarreta L, Gomez E, Arenillas A, Ania C, Parra J, Pis J (2008) H2 storage in carbon materials. Adsorption 14(4):557–566. doi:10.1007/s10450-008-9116-y

    Article  CAS  Google Scholar 

  13. 13.

    Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974):523–527

    Article  CAS  Google Scholar 

  14. 14.

    Sculley J, Yuan D, Zhou H-C (2011) The current status of hydrogen storage in metal-organic frameworks-updated. Energy Environ Sci

  15. 15.

    Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc 128(11):3494–3495. doi:10.1021/ja058213h

    Article  CAS  Google Scholar 

  16. 16.

    Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042. doi:10.1126/science.1116275

    Article  Google Scholar 

  17. 17.

    Yan Y, Telepeni I, Yang S, Lin X, Kockelmann W, Dailly A, Blake AJ, Lewis W, Walker GS, Allan DR, Barnett SA, Champness NR, Schröder M (2010) Metal-organic polyhedral frameworks: high H2 adsorption capacities and neutron powder diffraction studies. J Am Chem Soc 132(12):4092–4094. doi:10.1021/ja1001407

    Article  CAS  Google Scholar 

  18. 18.

    Koh K, Wong-Foy AG, Matzger AJ (2009) A porous coordination copolymer with over 5000 m2/g BET surface area. J Am ChemSoc 131(12):4184–4185. doi:10.1021/ja809985t

    Article  CAS  Google Scholar 

  19. 19.

    Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329(5990):424–428. doi:10.1126/science.1192160

    Article  CAS  Google Scholar 

  20. 20.

    Farha OK, Özgür Yazaydın A, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT (2010) De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2 (11):944–948. doi:

  21. 21.

    Yuan D, Lu W, Zhao D, Zhou H-C (2011) Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv Mater 23(32):3723–3725. doi:10.1002/adma.201101759

    Article  CAS  Google Scholar 

  22. 22.

    El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM (2007) Designed synthesis of 3D covalent organic frameworks. Science 316(5822):268–272. doi:10.1126/science.1139915

    Article  CAS  Google Scholar 

  23. 23.

    Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am ChemSoc 131(25):8875–8883. doi:10.1021/ja9015765

    Article  CAS  Google Scholar 

  24. 24.

    Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed 48(50):9457–9460. doi:10.1002/anie.200904637

    Article  CAS  Google Scholar 

  25. 25.

    Lan J, Cao D, Wang W, Ben T, Zhu G (2010) High-capacity hydrogen storage in porous aromatic frameworks with diamond-like structure. J Phys Chem Lett 1(6):978–981. doi:10.1021/jz900475b

    Article  CAS  Google Scholar 

  26. 26.

    Xia Y, Walker GS, Grant DM, Mokaya R (2009) Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. J Am ChemSoc 131(45):16493–16499. doi:10.1021/ja9054838

    Article  CAS  Google Scholar 

  27. 27.

    Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45(2):293–303. doi:10.1016/j.carbon.2006.09.022

    Article  Google Scholar 

  28. 28.

    Sarkisov L (2012) Accessible surface area of porous materials: understanding theoretical limits. Adv Mater 24(23):3130–3133. doi:10.1002/adma.201104708

    Article  CAS  Google Scholar 

  29. 29.

    Kuchta B, Firlej L, Mohammadhosseini A, Boulet P, Beckner M, Romanos J, Pfeifer P (2012) Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks. J Am Chem Soc 134(36):15130–15137. doi:10.1021/ja306726u

    Article  CAS  Google Scholar 

  30. 30.

    Bénard P, Chahine R (2007) Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr Mater 56(10):803–808

    Article  Google Scholar 

  31. 31.

    Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P (2012) Nanospace engineering of KOH activated carbon. Nanotechnology 23(1):015401

    Article  CAS  Google Scholar 

  32. 32.

    Kuchta B, Firlej L, Cepel R, Pfeifer P, Wexler C (2010) Structural and energetic factors in designing a nanoporous sorbent for hydrogen storage. Colloids Surf, A Physicochem Eng Asp 357(1–3):61–66

    Article  CAS  Google Scholar 

  33. 33.

    Firlej L, Kuchta B, Lazarewicz A, Pfeifer P (2012) Increased H2 gravimetric storage capacity in truncated carbon slit pores modeled by Grand Canonical Monte Carlo. Carbon. doi:10.1016/j.carbon.2012.10.049

  34. 34.

    Jagiello J, Olivier JP (2009) A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J Phys Chem C 113(45):19382–19385. doi:10.1021/jp9082147

    Article  CAS  Google Scholar 

Download references


This material is based upon work supported by the United States Department of Energy Grant No. DE-FG02-07ER46411.

Author information



Corresponding author

Correspondence to Bogdan Kuchta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuchta, B., Firlej, L., Mohammadhosseini, A. et al. Open carbon frameworks - a search for optimal geometry for hydrogen storage. J Mol Model 19, 4079–4087 (2013).

Download citation


  • Hydrogen adsorption
  • Monte Carlo simulations
  • Porous carbons