Relating normal vibrational modes to local vibrational modes: benzene and naphthalene

Abstract

Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F q (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f x with the help of the transformation matrix U = WB (BWB )−1 (B: Wilson’s B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W = M 1 (M: mass matrix) has numerical advantages with regard to the choice W = I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C–H and C–C bond strength.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3a–b

References

  1. 1.

    Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

  2. 2.

    Woodward LA (1972) Introduction to the theory of molecular vibrations and vibrational spectroscopy. Oxford University Press, Oxford

    Google Scholar 

  3. 3.

    Califano S (1976) Vibrational states. Wiley, London

    Google Scholar 

  4. 4.

    Wilson S (1992) In: Wilson S (ed) Methods in computational chemistry, volume 4: molecular vibrations. Plenum, New York, pp 1–32

  5. 5.

    Neto N (1984) Chem Phys 87:43

    Article  CAS  Google Scholar 

  6. 6.

    Neto N (1984) Chem Phys 91:89

    Article  CAS  Google Scholar 

  7. 7.

    Neto N (1984) Chem Phys 91:101

    Article  CAS  Google Scholar 

  8. 8.

    Cremer D, Pople JA (1975) J Am Chem Soc 97:1354

    Article  CAS  Google Scholar 

  9. 9.

    Cremer D, Szabo KJ (1995) In: Juaristi E (ed) Conformational behavior of six-membered rings, analysis, dynamics, and stereoelectronic effects (Methods in Stereochemical Analysis series). Wiley–VCH, New York, p 59

  10. 10.

    Zou W, Izotov D, Cremer D (2011) J Phys Chem A 115:8731

    Article  CAS  Google Scholar 

  11. 11.

    Crawford B (1952) J Chem Phys 20:77

    Article  Google Scholar 

  12. 12.

    Polo SR (1956) J Chem Phys 24:1133

    Article  CAS  Google Scholar 

  13. 13.

    Winnewisser B, Watson JKG (2001) J Mol Spectrosc 205:227

    Article  CAS  Google Scholar 

  14. 14.

    Cremer D, Larsson JA, Kraka E (1998) In: Parkanyi C (ed) Theoretical and computational chemistry, volume 5: theoretical organic chemistry. Elsevier, Amsterdam, p 259

  15. 15.

    Kraka E, Larsson JA, Cremer D (2010) In: Grunenberg J (ed) Computational spectroscopy: methods, experiments and applications. Wiley, New York, pp 105–149

  16. 16.

    Decius J (1963) J Chem Phys 38:241

    Article  CAS  Google Scholar 

  17. 17.

    Cyvin SJ, Slater NB (1960) Nature 188(4749):485

    Article  CAS  Google Scholar 

  18. 18.

    Cyvin SJ (1971) Molecular vibrations and mean square amplitudes. Universitetsforlaget, Oslo, pp 68–73

  19. 19.

    Vijay Madhav M, Manogaran S (2009) J Chem Phys 131(17):174112

    Article  CAS  Google Scholar 

  20. 20.

    Konkoli Z, Cremer D (1998) Int J Quant Chem 67:1

    Article  CAS  Google Scholar 

  21. 21.

    Eckart C (1935) Phys Rev 47:52

    Article  Google Scholar 

  22. 22.

    Larsson J, Cremer D (1999) J Mol Struct 485:385

    Article  Google Scholar 

  23. 23.

    McKean DC (1978) Chem Soc Rev 7:399

    Article  CAS  Google Scholar 

  24. 24.

    Henry BR (1987) Acc Chem Res 20(12):429

    Article  CAS  Google Scholar 

  25. 25.

    Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  26. 26.

    Stevens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  Google Scholar 

  27. 27.

    Dewar MJS, Ford GP (1977) J Am Chem Soc 99:1685

    Article  CAS  Google Scholar 

  28. 28.

    Hehre WJ, Radom L, Schleyer PvR, Pople JA (eds) (1986) Ab initio molecular orbital theory. Wiley, New York

  29. 29.

    Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated, vol. I. National Bureau of Standards, Washington, DC

  30. 30.

    Srivastava A, Singh V (2007) Ind J Pure Appl Phys 45:714

    CAS  Google Scholar 

  31. 31.

    Kraka E, Cremer D (2009) Chem Phys Chem 10(4):686

    Article  CAS  Google Scholar 

  32. 32.

    Badger RM (1934) J Chem Phys 2(3):128

    Article  CAS  Google Scholar 

  33. 33.

    Freindorf M, Kraka E, Cremer D (2012) Int J Quant Chem 112:3174

    Article  CAS  Google Scholar 

  34. 34.

    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, IV. Constants of diatomic molecules. Van Nostrand Reinhold, New York

  35. 35.

    Kawaguchi K, Hirota E (1987) J Chem Phys 87:6838

    Article  CAS  Google Scholar 

  36. 36.

    Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC, Boca Raton

  37. 37.

    Oomens J, Kraka E, Nguyen MK, Morton TH (2008) J Phys Chem A 112(43):10774

    Article  CAS  Google Scholar 

  38. 38.

    Cremer D, Kraka E (2010) Curr Org Chem 14:1524

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation, grant CHE 1152357. We thank Southern Methodist University for providing computational resources.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dieter Cremer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zou, W., Kalescky, R., Kraka, E. et al. Relating normal vibrational modes to local vibrational modes: benzene and naphthalene. J Mol Model 19, 2865–2877 (2013). https://doi.org/10.1007/s00894-012-1697-4

Download citation

Keywords

  • Normal vibrational modes
  • Local vibrational modes
  • Adiabatic connection scheme
  • Local mode analysis
  • Benzene
  • Naphthalene