Skip to main content
Log in

DFT and TDDFT study on the electronic structure and photoelectrochemical properties of dyes derived from cochineal and lac insects as photosensitizer for dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Essential parameters related to the photoelectrochemical properties, such as ground state geometries, electronic structures, oxidation potential and electron driving force, of cochineal insect dyes were investigated by DFT and TDDFT at the B3LYP/6-31+G(d,p) level of the theory. The results show that the major charge flow dynamic for all dyes is the HOMO→LUMO transition. The bi-coordinated binding mode, in which the dye uses one carboxyl- and hydroxyl oxygen bound to Ti(IV), is found for all dye-TiO2 systems. Additionally, the doubly bi-coordinated binding mode in which the dye used both carboxyl groups bound to two Ti(IV) is also possible due to high energy distribution occupied at anchoring groups. This study highlights that most of these insect dyes can be good photosensitizers in dye-sensitized solar cells based on their strong binding to the TiO2 surface, good computed excited state oxidation potential and thermodynamically favored electron driving force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a,b
Fig. 4

Similar content being viewed by others

References

  1. Ragan BO, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  3. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  4. Grätzel M (2004) J Photochem Photobiol A 164:3–14

    Article  Google Scholar 

  5. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M (2003) Nat Mater 2:402–407

    Article  CAS  Google Scholar 

  6. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) J Phys Chem B 107:597–606

    Article  CAS  Google Scholar 

  7. Hara K, Miyamoto K, Abe Y, Yanagida M (2005) J Phys Chem B Lett 109:23776–23778

    Article  CAS  Google Scholar 

  8. Horiuchi T, Miura H, Uchida S (2004) J Photochem Photobiol A 164:29–32

    Article  CAS  Google Scholar 

  9. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) J Am Chem Soc 126:12218–12219

    Article  CAS  Google Scholar 

  10. Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian T, Yanagida S (2004) Chem Mater 16:1806–1812

    Article  CAS  Google Scholar 

  11. Kim S, Lee JK, Kang SO, Ko J, Yum J-H, Fantacci S, De Angelis F, Censo DD, Nazeeruddin MK, Grätzel M (2006) J Am Chem Soc 128:16701–16707

    Article  CAS  Google Scholar 

  12. Koumura N, Wang Z-S, Mori S, Miyashita M, Suzuki E, Hara K (2006) J Am Chem Soc 128:14256–14257

    Article  CAS  Google Scholar 

  13. Wang Z-S, Koumura N, Cui Y, Takahashi M, Sekiguchi H, Mori A, Kubo T, Furube A, Hara K (2008) Chem Mater 20:3993–4003

    Article  CAS  Google Scholar 

  14. Wang Z-S, Koumura N, Cui Y, Miyashita M, Mori S, Hara K (2009) Chem Mater 21:2810–2816

    Article  CAS  Google Scholar 

  15. Koumura N, Wang Z-S, Miyashita M, Uemura Y, Sekiguchi H, Cui Y, Mori A, Mori S, Hara K (2009) J Mater Chem 19:4829–4836

    Article  CAS  Google Scholar 

  16. Zhang X-H, Li C, Wang W-B, Cheng X-X, Wang X-S, Zhang B-W (2007) J Mater Chem 17:642–649

    Article  CAS  Google Scholar 

  17. Zhang X-H, Wang Z-S, Cui Y, Koumura N, Furube A, Hara K (2009) J Phys Chem C 113:13409–13415

    Article  CAS  Google Scholar 

  18. Hagberg DP, Edvinsson T, Marinado T, Boschloo G, Hagfeldt A, Sun L-C (2006) Chem Commun 2245-2247

  19. Hagberg DP, Yun J-H, Lee JK, Angelis FD, Marinado T, Karlsson KM, Humphry-Baker R, Sun L-C, Hagfeldt A, Grätzel M, Nazeeruddin MK (2008) J Am Chem Soc 130:6259–6266

    Article  CAS  Google Scholar 

  20. Ning Z, Zhang Q, Wu WJ, Pei HC, Liu B, Tian H (2008) J Org Chem 73:3791–3797

    Article  CAS  Google Scholar 

  21. Ning Z, Zhang Q, Pei HC, Luan JF, Lu CG, Cui YP, Tian H (2009) J Phys Chem C 113:10307–10313

    Article  CAS  Google Scholar 

  22. Liu B, Zhu W, Zhang Q, Wu W, Xu M, Ning Z, Xie Y, Tian H (2009) Chem Commun 1766-1768

  23. Zhang GL, Bala H, Cheng YM, Shi D, Lv XJ, Yu QJ, Wang P (2009) Chem Commun 2198-2200

  24. Zeng WD, Cao YM, Bai Y, Wang YH, Shi YS, Zhang M, Wang FF, Pan CY, Wang P (2010) Chem Mater 22:1915–1925

    Article  CAS  Google Scholar 

  25. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han LY (2006) Jpn J Appl Phys 45:638–642

    Article  Google Scholar 

  26. Buscaino R, Baiocchi C, Barolo C, Medana C, Grätzel M, Nazeeruddin MK, Viscardi G (2008) Inorg Chim Acta 361:798–805

    Article  CAS  Google Scholar 

  27. Sirimanne PM, Senevirathna MKI, Premalal EVA, Pitigala PKDDP, Sivakumar V, Tennakone K (2006) J Photochem Photobiol A 177:324–327

    Article  CAS  Google Scholar 

  28. Hao S, Wu J, Huang Y, Lin J (2006) Sol Energy 80:209–214

    Article  CAS  Google Scholar 

  29. Polo AS, Murakami Iha NY (2006) Sol Energ Mat Sol Cell 90:1936–1944

    Article  CAS  Google Scholar 

  30. Wongcharee K, Meeyoo V, Chavadej S (2007) Sol Energ Mat Sol C 91:566–571

    Article  CAS  Google Scholar 

  31. Zhang D, Lanier SM, Downing JA, Avent JL, Lumc J, McHale JL (2008) J Photochem Photobiol A 195:72–80

    Article  CAS  Google Scholar 

  32. Roy MS, Balraju P, Kumar M, Sharma GD (2008) Sol Energ Mat Sol C 92:909–913

    Article  CAS  Google Scholar 

  33. Fernando JMRC, Senadeera GKR (2008) Curr Sci 95:663–666

    CAS  Google Scholar 

  34. Calogero G, Marco GD (2008) Sol Energ Mat Sol C 92:1341–1346

    Article  CAS  Google Scholar 

  35. Dai Q, Rabani J (2002) J Photochem Photobiol A 148:17–24

    Article  CAS  Google Scholar 

  36. Cherepy NJ, Smestad GP, Grätzel M, Zhang JZ (1997) J Phys Chem B 101:9342–9351

    Article  CAS  Google Scholar 

  37. Luo P, Niu H, Zheng G, Bai X, Zhang M, Wang W (2009) Spectrochim Acta Part A 74:936–942

    Article  Google Scholar 

  38. Furukawa S, Iino H, Iwamoto T, Kukita K, Yamauchi S (2009) Thin Solid Films 518:526–529

    Article  CAS  Google Scholar 

  39. Gómez-Ortíz NM, Vázquez-Maldonado IA, Pérez-Espadas AR, Mena-Rejón GJ, Azamar-Barrios JA, Oskam G (2010) Sol Energ Mat Sol C 94:40–44

    Article  Google Scholar 

  40. Yamazaki E, Murayama M, Nishikawa N, Hashimoto N, Shoyama M, Kurita O (2007) Sol Energy 81:512–516

    Article  CAS  Google Scholar 

  41. Espinosa R, Zumeta I, Santana JL, Martínez-Luzardo F, Gonzalez B, Docteur S, Vigil E, Vigil TE (2005) Sol Energ Mat Sol C 85:359–369

    Article  CAS  Google Scholar 

  42. Kumara GRA, Kaneko S, Okuya M, Onwona-Agyeman B, Konno A, Tennakone K (2006) Energ Mat Sol C 90:1220–1226

    Article  CAS  Google Scholar 

  43. Wang Z-S, Hara K, Dan-oh Y, Kasada C, Shinpo A, Suga S, Arakawa H, Sugihara H (2005) J Phys Chem B 109:3907–3914

    Article  CAS  Google Scholar 

  44. Wang Z-S, Cui Y, Hara K, Dan-oh Y, Kasada C, Shinpo A (2007) Adv Mater 19:1138–1141

    Article  CAS  Google Scholar 

  45. Wang Z-S, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K (2007) J Phys Chem C 111:7224–7230

    Article  CAS  Google Scholar 

  46. Wang Z-S, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K (2008) J Phys Chem C 112:17011–17017

    Article  CAS  Google Scholar 

  47. Ito S, Saitou T, Imahori H, Uehara H, Hasegawa N (2010) Energy Environ Sci 3:905–909

    Article  CAS  Google Scholar 

  48. Sang-aroon W, Saekow S, Amornkitbamrung V (2012) J Photochem Photobiol A 136:35–40

    Article  Google Scholar 

  49. Gaweda S, Stochel G, Szacilowski K (2008) J Phys Chem C 112:19131–19141

    CAS  Google Scholar 

  50. Cracknell JA, Vincent KA, Armstrong FA (2008) Chem Rev 108:2439–2461

    Article  CAS  Google Scholar 

  51. Parr RG, Young W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  52. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  53. Khon W, Sham L (1965) J Phys Rev A 140:1133–1138

    Article  Google Scholar 

  54. Beck ADJ (1993) J Chem Phys 98:5648–5652

    Article  Google Scholar 

  55. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  56. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  57. Rehm D, Weller A (1970) Israel J Chem 8:259–271

    CAS  Google Scholar 

  58. Goodman JL, Peters KS (1986) J Am Chem Soc 108:1700–1701

    Article  CAS  Google Scholar 

  59. Asbery JB, Wang YQ, Hao E, Ghosh H, Lian T (2001) Res Chem Intermed 27:393–406

    Article  Google Scholar 

  60. Hagfeldt A, Gräetzel M (1995) Chem Rev 95:49–63

    Article  CAS  Google Scholar 

  61. Preat J, Michaux C, Jacquemin D, Perpète EA (2009) J Phys C 113:16821–16833

    CAS  Google Scholar 

  62. Tomasi J, Mennucci B, Cancès ET (1999) J Mol Struct (THEOCHEM) 464:211–226

    Article  CAS  Google Scholar 

  63. Cancès ET, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  64. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  65. Mennucci B, Cancès ET, Tomasi J (1997) J Phys Chem B 101:10506–10507

    Article  CAS  Google Scholar 

  66. Cossi M, Barone V (1998) J Chem Phys 109:6246–6254

    Article  CAS  Google Scholar 

  67. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  68. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  69. Frisch MJ et al (2003) Gaussian 03. Revision B.03. Gaussian, Pittsburgh

  70. Flükiger P, Lüthi HP, Portmann S, Weber J (2000) MOLEKEL 4.3, Swiss Center for Scientific Computing, Manno (Switzerland)

  71. Heera TR, Cindrella L (2010) J Mol Model 16:523–533

    Article  CAS  Google Scholar 

  72. Balakina GG, Vasiliev VG, Karpova EV, Mamatyuk VI (2006) Dyes Pigments 71:54–60

    Article  CAS  Google Scholar 

  73. Pearson RG (1998) Inorg Chem 27:734–740

    Article  Google Scholar 

  74. Szostek B, Orska-Gawrys J, Surowiee I, Trojanowicz M (2003) J Chromatogr A 1012:179–192

    Article  CAS  Google Scholar 

  75. Zhang C-R, Liu Z-J, Chen Y-H, Chen H-S, Wu Y-Z, Feng W, Wang D-B (2010) Curr Appl Phys 10:77–83

    Article  CAS  Google Scholar 

  76. Irfan A, Al-Sehemi AG (2012) J Mol Model 18:4893–4900

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Research University Project, Khon Kaen University through the research grant no. PD.54401. Faculty of Engineering, Khon Kaen Campus and Institute of Research and Development, Rajamangala University of Technology Isan is also acknowledged for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittaya Amornkitbamrung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sang-aroon, W., Laopha, S., Chaiamornnugool, P. et al. DFT and TDDFT study on the electronic structure and photoelectrochemical properties of dyes derived from cochineal and lac insects as photosensitizer for dye-sensitized solar cells. J Mol Model 19, 1407–1415 (2013). https://doi.org/10.1007/s00894-012-1692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1692-9

Keywords

Navigation