Skip to main content
Log in

Enhancing and modulating the intrinsic acidity of imidazole and pyrazole through beryllium bonds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structure and electronic properties of the complexes formed by the interaction of imidazole and pyrazole with different BeXH(BeX2) (X = H, Me, F, Cl) derivatives have been investigated via B3LYP/6−311+G(3df,2p)//B3LYP/6−31+G(d,p) calculations. The formation of these azole:BeXH(BeX2) complexes is accompanied by a dramatic enhancement of the intrinsic acidity of the azole, as the deprotonated azole is much more stable after the aforementioned interaction. Most importantly, the increase in acidity is so large that the azole:BeXH or azole:BeX2 complexes behave as NH acids, which are stronger than typical oxyacids such as phosphoric acid and oxalic acid. Interestingly, the increase in acidity can be tuned through appropriate selection of the substituents attached to the Be atom, permitting us to modulate the electron-accepting ability of the BeXH or BeX2 molecule.

The association of pyrazole and imidazole with BeX2 derivatives dramatically enhances the acidity of the azole, so the complex imidazole:BeCl2 becomes a NH acid that is stronger than oxalic acid in the gas phase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3

Similar content being viewed by others

References

  1. Catalán J, De Paz JLG, Yáñez M, Amat-Guerri F, Houriet R, Rolli E, Zehringer R, Oelhafen P, Taft RW et al (1988) Study of the gas-phase basicity of 1-methylazaindole, 7-methyl-7H-pyrrolo[2,3-b]pyridine, and related compounds. J Am Chem Soc 110(9):2699–2705

    Article  Google Scholar 

  2. Decouzon M, Gal JF, Maria PC, Raczynska ED (1993) Superbases in the gas-phase—amidine and guanidine derivatives with proton affinities larger than 1000 kJ mol−1. Rapid Commun Mass Spectrom 7(7):599–602

    Google Scholar 

  3. Maksic ZB, Kovacevic B (1998) Toward organic superbases: the electronic structure and the absolute proton affinity of quinodiimines and some related compounds. J Phys Chem A 102(37):7324–7328

    Article  CAS  Google Scholar 

  4. Vianello R, Kovacevic B, Maksic ZB (2002) In search of neutral organic superbases—iminopolyenes and their amino derivatives. New J Chem 26(10):1324–1328

    Google Scholar 

  5. Kovacevic B, Maksic ZB (2002) The proton affinity of the superbase 1,8-bis (tetramethylguanidino) naphthalene (TMGN) and some related compounds: a theoretical study. Chem Eur J 8(7):1694–1702

    Article  CAS  Google Scholar 

  6. Kolomeitsev AA, Koppel IA, Rodima T, Barten J, Lork E, Roschenthaler GV, Kaljurand I, Kutt A, Koppel I, Maemets V, Leito I (2005) Guanidinophosphazenes: design, synthesis, and basicity in THF and in the gas phase. J Am Chem Soc 127(50):17656–17666

    Article  CAS  Google Scholar 

  7. Kovacevic B, Despotovic I, Maksic ZB (2007) In quest of strong neutral organic bases and superbases—supramolecular systems containing four pyridine subunits. Tetrahedron Lett 48(2):261–264

    Google Scholar 

  8. Roithova J, Schroeder D, Misek J, Stara IG, Stary I (2007) Chiral superbases: the proton affinities of 1-and 2-aza[6]helicene in the gas phase. J Mass Spectrom 42(9):1233–1237

    Article  CAS  Google Scholar 

  9. Kaljurand I, Koppel IA, Kutt A, Room EI, Rodima T, Koppel I, Mishima M, Leito I (2007) Experimental gas-phase basicity scale of superbasic phosphazenes. J Phys Chem A 111(7):1245–1250

    Article  CAS  Google Scholar 

  10. Glasovac Z, Strukil V, Eckert-Maksic M, Schroder D, Kaczorowska M, Schwarz H (2008) Gas-phase proton affinities of guanidines with heteroalkyl side chains. Int J Mass Spectrom 270(1–2):39–46

    CAS  Google Scholar 

  11. Singh A, Ganguly B (2009) DFT studies on a new class of cage functionalized organic superbases. New J Chem 33(3):583–587

    Article  CAS  Google Scholar 

  12. Coles MP, Aragon-Saez PJ, Oakley SH, Hitchcock PB, Davidson MG, Maksic ZB, Vianello R, Leito I, Kaljurand I, Apperley DC (2009) Superbasicity of a bis-guanidino compound with a flexible linker: a theoretical and experimental study. J Am Chem Soc 131(46):16858–16868

    Google Scholar 

  13. Bachrach SM, Wilbanks CC (2010) Using the pyridine and quinuclidine scaffolds for superbases: a DFT study. J Org Chem 75(8):2651–2660

    Google Scholar 

  14. Margetic D, Ishikawa T, Kumamoto T (2010) Exceptional superbasicity of bis(guanidine) proton sponges imposed by the bis(secododecahedrane) molecular scaffold: a computational study. Eur J Org Chem 34:6563–6572

    Google Scholar 

  15. Lo R, Ganguly B (2011) First principle studies toward the design of a new class of carbene superbases involving intramolecular H…π interactions. Chem Commun 47(26):7395–7397

    Google Scholar 

  16. Peran N, Maksic ZB (2011) Polycyclic croissant-like organic compounds are powerful superbases in the gas phase and acetonitrile—a DFT study. Chem Commun 47(4):1327–1329

    Google Scholar 

  17. Polyakova SM, Kunetskiy RA, Schroder D (2012) Proton affinities of 2-iminoimidazolines with bulky N-alkyl-substituents. Int J Mass Spectrom 314:13–17

    Article  CAS  Google Scholar 

  18. Lo R, Singh A, Kesharwani MK, Ganguly B (2012) Rational design of a new class of polycyclic organic bases bearing two superbasic sites and their applications in the CO2 capture and activation process. Chem Commun 48(47):5865–5867

    Google Scholar 

  19. Maksic ZB, Kovacevic B, Vianello R (2012) Advances in determining the absolute proton affinities of neutral organic molecules in the gas phase and their interpretation: a theoretical account. Chem Rev 112(10):5240–5270

    Google Scholar 

  20. Grandinetti F, Occhiucci G, Ursini O, Depetris G, Speranza M (1993) Ionic Lewis superacids in the gas phase. 1. Ionic intermediates from the attack of gaseous SiF3+ on N-bases. Int J Mass Spectrom 124(1):21–36

    Google Scholar 

  21. Koppel IA, Taft RW, Anvia F, Zhu SZ, Hu LQ, Sung KS, Desmarteau DD, Yagupolskii LM, Yagupolskii YL, Ignatev NV, Kondratenko NV, Volkonskii AY, Vlasov VM, Notario R, Maria PC (1994) The gas-phase acidities of very strong neutral Bronsted acids. J Am Chem Soc 116(7):3047–3057

    Google Scholar 

  22. Raczynska ED, Decouzon M, Gal J-F, Maria P-C, Wozniak K, Kurg R, Carins SN (1998) Superbases and superacids in the gas phase. Trends Org Chem 7:95–103

    CAS  Google Scholar 

  23. Abboud JLM, Castano O, Elguero J, Herreros M, Jagerovic N, Notario R, Sak K (1998) Superacid chemistry in the gas phase: dissociative proton attachment to halomethanes. Int J Mass Spectrom 175(1–2):35–40

    Article  CAS  Google Scholar 

  24. Steudel R, Otto AH (2000) Sulfur compounds, 213: geometries, acidities, and dissociation reactions of the gaseous superacids H2S2O3, H2SO5, HSO3F, and HSO3Cl. Eur J Inorg Chem 11:2379–2386

    Google Scholar 

  25. Koppel IA, Burk P, Koppel I, Leito I, Sonoda T, Mishima M (2000) Gas-phase acidities of some neutral Bronsted superacids: a DFT and ab initio study. J Am Chem Soc 122(21):5114–5124

    Article  CAS  Google Scholar 

  26. Gal JF, Maria PC, Raczynska ED (2001) Thermochemical aspects of proton transfer in the gas phase. J Mass Spectrom 36(7):699–716

    Article  CAS  Google Scholar 

  27. Vianello R, Liebman JF, Maksic ZB (2004) In search of ultrastrong Bronsted neutral organic superacids: a DFT study on some cyclopentadiene derivatives. Chem Eur J 10(22):5751–5760

    Article  CAS  Google Scholar 

  28. Maksic ZB, Vianello R (2004) Design of strong, neutral organic superacids: DFT-B3LYP calculations on some isobenzofulvene derivatives. Eur J Org Chem 9:1940–1945

    Article  Google Scholar 

  29. Maksic ZB, Vianello R (2004) Tailoring of strong neutral organic superacids: DFT-B3LYP calculations on some fulvene derivatives. New J Chem 28(7):843–846

    Article  CAS  Google Scholar 

  30. Vianello R, Maksic ZB (2005) Extremal acidity of Rees polycyanated hydrocarbons in the gas phase and DMSO—a density functional study. Chem Commun 27:3412–3414

    Google Scholar 

  31. Vianello R, Maksic ZB (2005) Towards highly powerful neutral organic superacids—a DFT study of some polycyano derivatives of planar hydrocarbons. Tetrahedron 61(39):9381–9390

    Google Scholar 

  32. Leito I, Kutt A, Room EI, Koppel I (2007) Anions N[C(CN)(2)](3)(−) and P[C(CN)(2)](3)(−) and the superacidic properties of their conjugate acids. J Mol Struct (THEOCHEM) 815(1–3):41–43

    Google Scholar 

  33. Vianello R, Maksic ZB (2008) Rees polycyanated hydrocarbons and related compounds are extremely powerful Bronsted superacids in the gas phase and DMSO—a density functional B3LYP study. New J Chem 32(3):413–427

    Google Scholar 

  34. Kutt A, Koppel I, Koppel IA, Leito I (2009) Boratabenzene anions C5B(CN)(6)(−) and C5B(CF3)(6)(−) and the superacidic properties of their conjugate acids. ChemPhysChem 10(3):499–502

    Google Scholar 

  35. Olah GA, Prakash GKS, Molnár A, Sommer J (2009) Superacid chemistry. Wiley, Hoboken

  36. González L, Mó O, Yáñez M, Elguero J (2001) Spontaneous self-ionization in the gas phase: a theoretical prediction. ChemPhysChem 7:465–467

    Google Scholar 

  37. Cherng B, Tao FM (2001) Formation of ammonium halide particles from pure ammonia and hydrogen halide gases: a theoretical study on small molecular clusters (NH3-HX)(n) (n = 1, 2, 4; X = F, Cl, Br). J Chem Phys 114(4):1720–1726

    Google Scholar 

  38. Alkorta I, Rozas I, Mó O, Yáñez M, Elguero J (2001) Hydrogen bond vs. proton transfer between neutral molecules in the gas phase. J Phys Chem A 105:7481–7485

    Article  CAS  Google Scholar 

  39. Burk P, Koppel W, Trummal A, Koppel IA (2008) Feasibility of the spontaneous gas-phase proton transfer equilibria between neutral Bronsted acids and Bronsted bases. J Phys Org Chem 21(7–8):571–574

    Article  CAS  Google Scholar 

  40. Ren JH, Cramer CJ, Squires RR (1999) Superacidity and superelectrophilicity of BF3–carbonyl complexes. J Am Chem Soc 121(11):2633–2634

    Google Scholar 

  41. Hurtado M, Yáñez M, Herrero R, Guerrero A, Dávalos JZ, Abboud J-LM, Khater B, Guillemin JC (2009) The ever-surprising boron chemistry. Enhanced acidity of phosphine-boranes. Chem Eur J 15:4622–4629

    Google Scholar 

  42. Martín-Sómer A, Lamsabhi A, Yáñez M, Dávalos J, González J, Ramos R, Guillemin JC (2012) Can an amine be a stronger acid than a carboxylic acid? The surprisingly high acidity of amine–borane complexes. Chem Eur J 18(49):15699–15705

    Google Scholar 

  43. Martín-Sómer A, Lamsabhi A, Mó O, Yáñez M (2012) Unexpected acidity enhancement triggered by AIH(3) association to phosphines. J Phys Chem A 116(25):6950–6954

    Google Scholar 

  44. Yáñez M, Sanz P, Mó O, Alkorta I, Elguero J (2009) Beryllium bonds, do they exist? J Chem Theor Comput 5:2763–2771

    Google Scholar 

  45. Mó O, Yáñez M, Alkorta I, Elguero J (2012) Modulating the strength of hydrogen bonds through beryllium bonds. J Chem Theory Comput 8:2293–2300

    Article  Google Scholar 

  46. Gal J-F, Decouzon M, Maria P-C, González AI, Mó O, Yáñez M, El Chaouch S, Guillemin J-C (2001) Acidity trends in α,β-unsaturated alkanes, silanes, germanes, and stannanes. J Am Chem Soc 123:6353–6359

    Google Scholar 

  47. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88(6):899–926

    Google Scholar 

  48. Wiberg KB (1968) Application of Pople–Santry–Segal CNDO method to cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24(3):1083–1088

    Google Scholar 

  49. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

  50. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley-VCH, Weinheim

  51. Gianola AJ, Ichino T, Hoenigman RL, Kato SB VM, Lineberger WC (2005) Photoelectron spectra and ion chemistry of imidazolide. J Phys Chem A 109:11504–11514

    Article  CAS  Google Scholar 

  52. Gianola AJ, Ichino T, Kato S, Bierbaum VM, Lineberger WC (2006) Thermochemical studies of pyrazolide. J Phys Chem A 110:8457–8466

    Article  CAS  Google Scholar 

  53. Morris RA, Knighton WB, Viggiano AA, Hoffman BC, Schaefer HF (1997) The gas-phase acidity of H3PO4. J Chem Phys 106(9):3545–3547

    Google Scholar 

  54. Kumar MR, Prabhakar S, Nagaveni V, Vairamani M (2005) Estimation of gas-phase acidities of a series of dicarboxylic acids by the kinetic method. Rapid Commun Mass Spectrom 19(8):1053–1057

    Article  CAS  Google Scholar 

  55. Martín-Sómer A, Lamsabhi AM, Mó O, Yáñez M (2012) The importance of deformation on the strength of beryllium bonds. Comput Theor Chem 998:49–74

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Dirección General de Investigación (DGI) (projects no. CTQ2009-13129 and CTQ2010-17006), by the project MADRISOLAR2, ref.: S2009PPQ/1533 of the Comunidad Autónoma de Madrid, and by Consolider on Molecular Nanoscience CSC2007-00010. Generous allocations of computing time at the Centro Técnico de Informática (CTI) Consejo Superior de Investigaciones Científicas (CSIC) and at the Centro de Computación Científica (CCC) of the Universidad Autónoma de Madrid (UAM) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Yáñez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 407 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mó, O., Yáñez, M., Alkorta, I. et al. Enhancing and modulating the intrinsic acidity of imidazole and pyrazole through beryllium bonds. J Mol Model 19, 4139–4145 (2013). https://doi.org/10.1007/s00894-012-1682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1682-y

Keywords

Navigation